Publications by authors named "Praveen N Chander"

The Banff community summoned the TMA Banff Working Group to develop minimum diagnostic criteria (MDC) and recommendations for renal transplant TMA (Tx-TMA) diagnosis, which currently lacks standardized criteria. Using the Delphi method for consensus generation, 23 nephropathologists (panelists) with >3 years of diagnostic experience with Tx-TMA were asked to list light, immunofluorescence, and electron microscopic, clinical and laboratory criteria and differential diagnoses for Tx-TMA. Delphi was modified to include 2 validations rounds with histological evaluation of whole slide images of 37 transplant biopsies (28 TMA and 9 non-TMA).

View Article and Find Full Text PDF

The Thrombotic Microangiopathy Banff Working Group (TMA-BWG) was formed in 2015 to survey current practices and develop minimum diagnostic criteria (MDC) for renal transplant TMA (Tx-TMA). To generate consensus among pathologists and nephrologists, the TMA BWG designed a 3-Phase study. Phase I of the study is presented here.

View Article and Find Full Text PDF

Glomerular parietal epithelial cells (PECs) have been increasingly recognized to have crucial functions. Lineage tracking in animal models showed the expression of a podocyte phenotype by PECs during normal glomerular growth and after acute podocyte injury, suggesting a reparative role of PECs. Conversely, activated PECs are speculated to be pathogenic and comprise extracapillary proliferation in focal segmental glomerulosclerosis (FSGS) and crescentic glomerulonephritis (CrescGN).

View Article and Find Full Text PDF

APOL1-miR193a axis participates in the preservation of molecular phenotype of differentiated podocytes (DPDs). We examined the hypothesis that APOL1 (G0) preserves, but APOL1 risk alleles (G1 and G2) disrupt APOL1-miR193a axis in DPDs. DPDG0s displayed down-regulation of miR193a, but upregulation of nephrin expression.

View Article and Find Full Text PDF
Article Synopsis
  • Human parietal epithelial cells (PECs) play a key role in maintaining podocyte health, and the presence of apolipoprotein (APO) L1 influences their transition to a podocyte-like state.
  • The expression of APO L1 and the down-regulation of miR193a are associated with this transition, with evidence suggesting a feedback loop between these two molecules.
  • Factors like HIV and vitamin D receptor agonists can activate APO L1 and affect miR193a levels, highlighting APO L1's importance in regulating PEC behavior and its potential impact in diseases involving kidney cells.
View Article and Find Full Text PDF

Marijuana is one of the most commonly used recreational drugs in the United States. As marijuana is illegal in the majority of countries, the use of readily available and unregulated synthetic cannabinoids (SCBs) has increased. Little is known about the potential adverse effects of SCBs especially in regards to their nephrotoxicity.

View Article and Find Full Text PDF

Dysregulated growth and loss of podocytes are important features of HIV-associated nephropathy. Recently, HIV was reported to induce a new type of programed cell death, pyroptosis, in T lymphocytes through induction of Nod-like receptor protein 3 (NLRP3) inflammasome complexes. We evaluated the role of HIV in podocyte NLRP3 inflammasome formation both in vivo and in vitro.

View Article and Find Full Text PDF

HIV (human immunodeficiency virus) has been reported to induce podocyte injury through down regulation of vitamin D receptor (VDR) and activation of renin angiotensin system; however, the involved mechanism is not clear. Since HIV has been reported to modulate gene expression via epigenetic phenomena, we asked whether epigenetic factors contribute to down regulation of VDR. Kidney cells in HIV transgenic mice and HIV-infected podocytes (HIV/HPs) displayed enhanced expression of SNAIL, a repressor of VDR.

View Article and Find Full Text PDF

In 1970s, Heroin-associated Nephropathy (HAN), one form of focal and segmental glomerulosclerosis (FSGS), was a predominant cause of End-stage Kidney Disease (ESKD) in African-Americans (AAs). In 1980s, with the surge of Acquired Immune Deficiency Syndrome (AIDS) in AAs, HAN more or less disappeared, and the incidence of Human Immunodeficiency Virus associated Nephropathy (HIVAN) markedly increased. Recent studies in AAs have identified APOL1 variants (Vs) as a major risk factor for the development and progression of non-diabetic kidney diseases including idiopathic FSGS and hypertension-attributed nephrosclerosis.

View Article and Find Full Text PDF

ANG II type 1 receptor blockade (AT1R-BLK) is used extensively to slow down the progression of proteinuric kidney diseases. We hypothesized that AT1R-BLK provides podocyte protection through regulation of silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and vitamin D receptor (VDR) expression under adverse milieus such as high glucose and human immunodeficiency virus infection. Both AT1R-BLK and VDR agonists (VDAs) stimulated VDR complex formation that differed not only in their composition but also in their functionality.

View Article and Find Full Text PDF

Excessive TGF-β signaling in epithelial cells, pericytes, or fibroblasts has been implicated in CKD. This list has recently been joined by endothelial cells (ECs) undergoing mesenchymal transition. Although several studies focused on the effects of ablating epithelial or fibroblast TGF-β signaling on development of fibrosis, there is a lack of information on ablating TGF-β signaling in the endothelium because this ablation causes embryonic lethality.

View Article and Find Full Text PDF

Background: Activation of angiotensin (ANG) II type 1 receptors (AT1R) promotes vasoconstriction, inflammation, and renal dysfunction. In this study, we addressed the ability of azilsartan (AZL), a new AT1R antagonist, to modulate levels of plasma ANG-(1-7) and renal epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE).

Methods: Sprague-Dawley rats were infused with ANG II (125 ng/min) or vehicle (VEH).

View Article and Find Full Text PDF

Kidney damage is markedly accelerated by high-salt (HS) intake in stroke-prone spontaneously hypertensive rats (SHRSP). Epoxyeicosatrienoic acids (EETs) are epoxygenase products of arachidonic acid which possess vasodepressor, natriuretic, and anti-inflammatory activities. We examined whether up-regulation (clofibrate) or inhibition [N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (MS-PPOH)] of epoxygenase would alter systolic blood pressure (SBP) and/or renal pathology in SHRSP on HS intake (1% NaCl drinking solution).

View Article and Find Full Text PDF

HIV-associated nephropathy (HIVAN) is a common complication of HIV-1 infection in patients with African ancestry in general and with APOL1 gene risk variants in particular. Although collapsing glomerulopathy is considered a hallmark of HIVAN, significant numbers of glomeruli in patients with HIVAN also display other variants of focal segmental glomerulosclerosis (FSGS). We propose that collapsed glomeruli as well as glomeruli with other variants of FSGS are manifestations of HIVAN and their prevalence depends on associated host factors.

View Article and Find Full Text PDF

Oxidative stress has been implicated to contribute to HIV-induced kidney cell injury; however, the role of p53, a modulator of oxidative stress, has not been evaluated in the development of HIV-associated nephropathy (HIVAN). We hypothesized that mammalian target of rapamycin (mTOR) may be critical for the induction of p53-mediated oxidative kidney cell injury in HIVAN. To test our hypothesis, we evaluated the effect of an mTOR inhibitor, rapamycin, on kidney cell p53 expression, downstream signaling, and kidney cell injury in both in vivo and in vitro studies.

View Article and Find Full Text PDF

Background And Objectives: Collapsing glomerulopathy is a podocytopathy with segmental or global wrinkling and collapse of capillary walls and overlying epithelial cell proliferation. Idiopathic collapsing glomerulopathy is a distinct clinicopathologic entity with significant proteinuria, poor response to immunosuppressive therapy, and rapid progression to renal failure. Collapsing glomerulopathy is associated with viral infections, autoimmune disease, and drugs.

View Article and Find Full Text PDF

AT(1)R has been reported to play an important role in the progression of HIV-associated nephropathy (HIVAN); however, the effect of AT(2)R has not been studied. Age and sex matched control (FVB/N) and Tg26 mice aged 4, 8, and 16weeks were studied for renal tissue expression of AT(1)R and AT(2)R (Protocol A). Renal tissue mRNA expression of AT(2)R was lower in Tg26 mice when compared with control mice.

View Article and Find Full Text PDF

In the present study, we hypothesized that HIV-1-induced occult HIV-associated nephropathy (HIVAN) would become apparent in the presence of adverse host factors. To test our hypothesis, Vpr mice (which display doxycycline-dependent Vpr expression in podocytes) with two, three, and four copies of the angiotensinogen (Agt) gene (Vpr-Agt-2, Vpr-Agt-3, and Vpr-Agt-4) were administered doxycycline for 3 weeks (to develop clinically occult HIVAN) followed by doxycycline-free water during the next 3 weeks. Subsequently, renal biomarkers were measured, and kidneys were harvested for renal histology.

View Article and Find Full Text PDF

Diffuse infiltrative lymphocytosis syndrome (DILS) is believed to be an immunologic syndrome, most likely in response to human immunodeficiency virus (HIV) antigens, and can be accompanied by decreased kidney function. The spectrum of kidney involvement includes acute or chronic kidney disease, primarily tubular proteinuria; enlarged kidneys on imaging studies; and dense lymphocytic tubulointerstitial infiltrates predominantly composed of CD8(+) T cells on kidney biopsy. We describe 3 newly diagnosed HIV-positive patients of African descent with the histologic and clinical diagnosis of DILS who presented with acute kidney injury associated with Gram-negative bacterial infections.

View Article and Find Full Text PDF

Both glomerular and tubular lesions are characterized by a proliferative phenotype in HIV-associated nephropathy. We hypothesized that mammalian target of rapamycin (mTOR) contributes to the development of the HIVAN phenotype. Both glomerular and tubular epithelial cells showed enhanced expression of phospho (p)-mTOR in HIV-1 transgenic mice (Tgs).

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV)-1-associated nephropathy (HIVAN) is characterized by proliferation of glomerular and tubular epithelial cells. We studied the role of epithelial mesenchymal transdifferentiation (EMT) in the development of HIVAN phenotype. Renal cortical sections from six FVB/N (control) and six Tg26 (HIVAN) mice were immunolabeled for PCNA, alpha-smooth muscle actin (alpha-SMA), fibroblast-specific protein-1 (FSP1), CD3, and F4/80.

View Article and Find Full Text PDF