Publications by authors named "Praveen Kumar Sekhar"

In this article, an inkjet-printed circular-shaped monopole ultra-wideband (UWB) antenna with an inside-cut feed structure was implemented on a flexible polyethylene terephthalate (PET) substrate. The coplanar waveguide (CPW)-fed antenna was designed using ANSYS high-frequency structural simulator (HFSS), which operates at 3.04-10.

View Article and Find Full Text PDF

The field of flexible antennas is witnessing an exponential growth due to the demand for wearable devices, Internet of Things (IoT) framework, point of care devices, personalized medicine platform, 5G technology, wireless sensor networks, and communication devices with a smaller form factor to name a few. The choice of non-rigid antennas is application specific and depends on the type of substrate, materials used, processing techniques, antenna performance, and the surrounding environment. There are numerous design innovations, new materials and material properties, intriguing fabrication methods, and niche applications.

View Article and Find Full Text PDF

In this article, the optimization of printing properties on a new, flexible ceramic substrate is reported for sensing and antenna applications encompassing internet of things (IoT) devices. E-Strate is a commercially available, non-rigid, thin ceramic substrate for implementing in room temperature and high-temperature devices. In this substrate, the printing parameters like drop spacing, number of printed layers, sintering temperature, and sintering time were varied to ensure an electrically conductive and repeatable pattern.

View Article and Find Full Text PDF

In this article, a new investigation on a low-temperature electrochemical hydrocarbon and NO sensor is presented. Based on the mixed-potential-based sensing scheme, the sensor is constructed using platinum and metal oxide electrodes, along with an Yttria-Stabilized Zirconia (YSZ)/Strontium Titanate (SrTiO₃) thin-film electrolyte. Unlike traditional mixed-potential sensors which operate at higher temperatures (>400 °C), this potentiometric sensor operates at 200 °C with dominant hydrocarbon (HC) and NO response in the open-circuit and biased modes, respectively.

View Article and Find Full Text PDF

Au@Cu2O core-shell nanoparticles (NPs) were synthesized by a solution method at room temperature and applied for gas sensor applications. Transmission electron microscopy (TEM) images showed the formation of Au@Cu2O core-shell NPs, where 12-15 nm Au NPs were covered with 60-30 nm Cu2O shell layers. The surface plasmon resonance (SPR) peak of Au NPs was red-shifted (520-598 nm) after Cu2O shell formation.

View Article and Find Full Text PDF

Selective growth of amorphous silica nanowires on a silicon wafer deposited with Pt thin film is reported. The mechanism of nanowire growth has been established to follow the vapour liquid solid (VLS) model via the PtSi phase acting as the catalyst. Nanowires grow with diameters ranging from 50 to 500 nm.

View Article and Find Full Text PDF