Publications by authors named "Praveen Kumar Kanti"

This study explores the thermal conductivity and viscosity of water-based nanofluids containing silicon dioxide, graphene oxide, titanium dioxide, and their hybrids across various concentrations (0 to 1 vol%) and temperatures (30 to 60 °C). The nanofluids, characterized using multiple methods, exhibited increased viscosity and thermal conductivity compared to water, with hybrid nanofluids showing superior performance. Graphene oxide nanofluids displayed the highest thermal conductivity and viscosity ratios, with increases of 52% and 177% at 60 °C and 30 °C, respectively, for a concentration of 1 vol% compared to base fluid.

View Article and Find Full Text PDF

The study investigates the heat transfer and friction factor properties of ethylene glycol and glycerol-based silicon dioxide nanofluids flowing in a circular tube under continuous heat flux circumstances. This study tackles the important requirement for effective thermal management in areas such as electronics cooling, the automobile industry, and renewable energy systems. Previous research has encountered difficulties in enhancing thermal performance while handling the increased friction factor associated with nanofluids.

View Article and Find Full Text PDF