Publications by authors named "Praveen K Kathare"

Light signals perceived by a group of photoreceptors have profound effects on the physiology, growth, and development of plants. The red/far-red light-absorbing phytochromes (phys) modulate these aspects by intricately regulating gene expression at multiple levels. Here, we report the identification and functional characterization of an RNA-binding splicing factor, SWAP1 (SUPPRESSOR-OF-WHITE-APRICOT/SURP RNA-BINDING DOMAIN-CONTAINING PROTEIN1).

View Article and Find Full Text PDF

To compensate for a sessile nature, plants have developed sophisticated mechanisms to sense varying environmental conditions. Phytochromes (phys) are light and temperature sensors that regulate downstream genes to render plants responsive to environmental stimuli. Here, we show that phyB directly triggers the formation of a repressive chromatin loop by physically interacting with VERNALIZATION INSENSITIVE 3-LIKE1/VERNALIZATION 5 (VIL1/VRN5), a component of Polycomb Repressive Complex 2 (PRC2), in a light-dependent manner.

View Article and Find Full Text PDF

Light signal perceived by the red/far-red absorbing phytochrome (phy) family of photoreceptors regulates plant growth and development throughout the life cycle. Phytochromes regulate the light-triggered physiological responses by controlling gene expression both at the transcriptional and post-transcriptional levels. Recent large-scale RNA-seq studies have demonstrated the roles of phys in altering the global transcript diversity by modulating the pre-mRNA splicing in response to light.

View Article and Find Full Text PDF

The perception of light signals by the phytochrome family of photoreceptors has a crucial influence on almost all aspects of growth and development throughout a plant's life cycle. The holistic regulatory networks orchestrated by phytochromes, including conformational switching, subcellular localization, direct protein-protein interactions, transcriptional and posttranscriptional regulations, and translational and posttranslational controls to promote photomorphogenesis, are highly coordinated and regulated at multiple levels. During the past decade, advances using innovative approaches have substantially broadened our understanding of the sophisticated mechanisms underlying the phytochrome-mediated light signaling pathways.

View Article and Find Full Text PDF

Light responses mediated by the photoreceptors play crucial roles in regulating different aspects of plant growth and development. An E3 ubiquitin ligase complex CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)1/SUPPRESSOR OF PHYA (SPA), one of the central repressors of photomorphogenesis, is critical for maintaining skotomorphogenesis. It targets several positive regulators of photomorphogenesis for degradation in darkness.

View Article and Find Full Text PDF

PHOTOPERIODIC CONTROL OF HYPOCOTYL 1 (PCH1) and PCH1-LIKE (PCHL) were shown to directly bind to phytochrome B (phyB) and suppress phyB thermal reversion, resulting in plants with dramatically enhanced light sensitivity. Here, we show that PCH1 and PCHL also positively regulate various light responses, including seed germination, hypocotyl gravitropism, and chlorophyll biosynthesis, by physically interacting with PHYTOCHROME INTERACTING FACTOR 1 (PIF1) and CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1). PCH1 and PCHL interact with PIF1 both in the dark and light, and regulate PIF1 abundance.

View Article and Find Full Text PDF

Picloram is an auxinic herbicide that is widely used for controlling broad leaf weeds. However, its mechanism of transport into plants is poorly understood. In a genetic screen for picloram resistance, we identified three Arabidopsis mutant alleles of PIC30 (PICLORAM RESISTANT30) that are specifically resistant to picolinates, but not to other auxins.

View Article and Find Full Text PDF

Light signals perceived by the phytochrome (phy) family of photoreceptors control gene expression at both transcriptional and posttranscriptional levels to promote photomorphogenesis. Recently, we identified a factor called SPLICING FACTOR FOR PHYTOCHROME SIGNALING (SFPS) that directly interacts with the photoreceptor phyB and regulates pre-mRNA splicing in Arabidopsis (). To identify SFPS-interacting proteins, we performed an immunoprecipitation followed by a mass spectrometry and identified the Ser/Arg-like protein REDUCED RED-LIGHT RESPONSES IN CRY1CRY2 BACKGROUND1 (RRC1).

View Article and Find Full Text PDF

SAUR53 is a member of SAUR (Small Auxin-Up RNA) gene family of primary auxin responsive genes. In Arabidopsis, SAUR gene family is represented by 81 genes including two pseudogenes; however, the functions of most of these genes are not fully characterized yet. In the present study, we show that SAUR53 expresses throughout the plant and localizes to both plasma membrane and the nucleus.

View Article and Find Full Text PDF

Light signal provides the spatial and temporal information for plants to adapt to the prevailing environmental conditions. Alterations in light quality and quantity can trigger robust changes in global gene expression. In Arabidopsis thaliana, two groups of key factors regulating those changes in gene expression are CONSTITUTIVE PHOTOMORPHOGENESIS/DEETIOLATED/FUSCA (COP/DET/FUS) and a subset of basic helix-loop-helix transcription factors called PHYTOCHROME-INTERACTING FACTORS (PIFs).

View Article and Find Full Text PDF

Seeds employ sensory systems that assess various environmental cues over time to maximize the successful transition from embryo to seedling. Here we show that the F-BOX protein COLD TEMPERATURE-GERMINATING (CTG)-10, identified by activation tagging, is a positive regulator of this process. When overexpressed (OE), CTG10 hastens aspects of seed germination.

View Article and Find Full Text PDF

Phytochrome B (phyB) is the primary red light photoreceptor in plants, and regulates both growth and development. The relative levels of phyB in the active state are determined by the light conditions, such as direct sunlight or shade, but are also affected by light-independent dark reversion. Dark reversion is a temperature-dependent thermal relaxation process, by which phyB reverts from the active to the inactive state.

View Article and Find Full Text PDF

The basic helix-loop-helix domain-containing transcription factors that interact physically with the red and far-red light photoreceptors, phytochromes, are called PHYTOCHROME INTERACTING FACTORS (PIFs). In the last two decades, the phytochrome-PIF signaling module has been shown to be conserved from to higher plants. Exciting recent studies highlight the discovery of at least four distinct kinases (PPKs, CK2, BIN2, and phytochrome itself) and four families of ubiquitin ligases (SCF, CUL3, CUL3, and CUL4) that regulate PIF abundance both in dark and light conditions.

View Article and Find Full Text PDF

PHYTOCHROME-INTERACTING FACTORs (PIFs) are members of the basic helix-loop-helix (bHLH) family of transcription factors in Arabidopsis. Since their discovery in phytochrome-mediated light signaling pathways, recent studies have unraveled new functions of PIFs in integrating multiple signaling pathways not only through their role as transcription factors directly targeting gene expression but also by interacting with diverse groups of factors to optimize plant growth and development. These include endogenous (e.

View Article and Find Full Text PDF

The phytochrome-mediated regulation of photomorphogenesis under red and far-red light conditions involves both positively and negatively acting factors. The positively acting factors (e.g.

View Article and Find Full Text PDF