Computer simulations of the fluid-to-solid phase transition in the hard sphere system were instrumental for our understanding of crystallization processes. But while colloid experiments and theory have been predicting the stability of several binary hard sphere crystals for many years, simulations were not successful to confirm this phenomenon. Here, we report the growth of binary hard sphere crystals isostructural to Laves phases, AlB_{2}, and NaZn_{13} in simulation directly from the fluid.
View Article and Find Full Text PDFColloids are rarely perfectly uniform but follow a distribution of sizes, shapes, and charges. This dispersity can be inherent (static) or develop and change over time (dynamic). Despite a long history of research, the conditions under which nonuniform particles crystallize and which crystal forms is still not well understood.
View Article and Find Full Text PDFCo-crystal formation from fluid-mixtures is quite common in a large number of systems. The simplest systems that show co-crystal (also called substitutionally ordered solids) formation are binary hard sphere mixtures. In this work, we study the nucleation of AB type solid compounds using Monte Carlo molecular simulations in binary hard sphere mixtures with the size ratio of 0.
View Article and Find Full Text PDFFaraday Discuss
January 2017
The synthesis of high quality protein crystals is essential for determining their structure. Hence the development of strategies to facilitate the nucleation of protein crystals is of prime importance. Recently, Ghatak and Ghatak [Langmuir 2013, 29, 4373] reported heterogeneous nucleation of protein crystals on nano-wrinkled surfaces.
View Article and Find Full Text PDF