Publications by authors named "Praveen Bawankar"

The exon junction complex controls the translation, degradation, and localization of spliced mRNAs, and three of its core subunits also play a role in splicing. Here, we show that a fourth subunit, Barentsz, has distinct functions within and separate from the exon junction complex in Drosophila neuromuscular development. The distribution of mitochondria in larval muscles requires Barentsz as well as other exon junction complex subunits and is not rescued by a Barentsz transgene in which residues required for binding to the core subunit eIF4AIII are mutated.

View Article and Find Full Text PDF
Article Synopsis
  • N-methyladenosine (mA) is a key modification found in mRNA that plays a role in various biological processes, and the E3 ubiquitin ligase Hakai is linked to this modification's regulatory mechanisms.
  • In studies with Drosophila and human cells, it was found that depleting Hakai lowers mA levels and disrupts crucial functions like sex determination.
  • Hakai's ability to interact with the mA machinery relies on its ubiquitination domain for dimerization, rather than its enzymatic activity, and its absence leads to instability in the methyltransferase complex, hindering mA addition to mRNA.
View Article and Find Full Text PDF

GIGYF (Grb10-interacting GYF [glycine-tyrosine-phenylalanine domain]) proteins coordinate with 4EHP (eIF4E [eukaryotic initiation factor 4E] homologous protein), the DEAD (Asp-Glu-Ala-Asp)-box helicase Me31B/DDX6, and mRNA-binding proteins to elicit transcript-specific repression. However, the underlying molecular mechanism remains unclear. Here, we report that GIGYF contains a motif necessary and sufficient for direct interaction with Me31B/DDX6.

View Article and Find Full Text PDF

The eIF4E-homologous protein (4EHP) is a translational repressor that competes with eIF4E for binding to the 5'-cap structure of specific mRNAs, to which it is recruited by protein factors such as the GRB10-interacting GYF (glycine-tyrosine-phenylalanine domain) proteins (GIGYF). Several experimental evidences suggest that GIGYF proteins are not merely facilitating 4EHP recruitment to transcripts but are actually required for the repressor activity of the complex. However, the underlying molecular mechanism is unknown.

View Article and Find Full Text PDF

The eIF4E homologous protein (4EHP) is thought to repress translation by competing with eIF4E for binding to the 5' cap structure of specific mRNAs to which it is recruited through interactions with various proteins, including the GRB10-interacting GYF (glycine-tyrosine-phenylalanine domain) proteins 1 and 2 (GIGYF1/2). Despite its similarity to eIF4E, 4EHP does not interact with eIF4G and therefore fails to initiate translation. In contrast to eIF4G, GIGYF1/2 bind selectively to 4EHP but not eIF4E.

View Article and Find Full Text PDF

Human (Hs) Roquin1 and Roquin2 are RNA-binding proteins that promote mRNA target degradation through the recruitment of the CCR4-NOT deadenylase complex and are implicated in the prevention of autoimmunity. Roquin1 recruits CCR4-NOT via a C-terminal region that is not conserved in Roquin2 or in invertebrate Roquin. Here we show that Roquin2 and Drosophila melanogaster (Dm) Roquin also interact with the CCR4-NOT complex through their C-terminal regions.

View Article and Find Full Text PDF

CCR4-NOT is a major effector complex in miRNA-mediated gene silencing. It is recruited to miRNA targets through interactions with tryptophan (W)-containing motifs in TNRC6/GW182 proteins and is required for both translational repression and degradation of miRNA targets. Here, we elucidate the structural basis for the repressive activity of CCR4-NOT and its interaction with TNRC6/GW182s.

View Article and Find Full Text PDF

The CCR4-NOT complex plays a crucial role in post-transcriptional mRNA regulation in eukaryotes. This complex catalyzes the removal of mRNA poly(A) tails, thereby repressing translation and committing an mRNA to degradation. The conserved core of the complex is assembled by the interaction of at least two modules: the NOT module, which minimally consists of NOT1, NOT2 and NOT3, and a catalytic module comprising two deadenylases, CCR4 and POP2/CAF1.

View Article and Find Full Text PDF

The CCR4-NOT complex plays a crucial role in post-transcriptional mRNA regulation in eukaryotic cells. It catalyzes the removal of mRNA poly(A) tails, thereby repressing translation and committing mRNAs to decay. The conserved core of the complex consists of a catalytic module comprising two deadenylases (CAF1/POP2 and CCR4a/b) and the NOT module, which contains at least NOT1, NOT2 and NOT3.

View Article and Find Full Text PDF

The Plasmodium falciparum genome being AT-rich, the presence of GC-rich regions suggests functional significance. Evolution imposes selection pressure to retain functionally important coding and regulatory elements. Hence searching for evolutionarily conserved GC-rich, intergenic regions in an AT-rich genome will help in discovering new coding regions and regulatory elements.

View Article and Find Full Text PDF

5' caps provide recognition sequences for the nuclear import of snRNAs. The 5' and 3' ends of snRNAs were studied in Plasmodium falciparum with a modified adapter ligation method, which showed that 5' ends of U1, U2, U4, U5 and U6 snRNAs are capped. In P.

View Article and Find Full Text PDF

Noncoding RNAs (ncRNAs) such as snRNAs, snoRNAs and microRNAs play important roles in transcription and translation control. These ncRNAs have yet to be discovered in the malarial parasite Plasmodium falciparum, an organism in which these basic biological processes are poorly understood. Inspired by a report by Klein et al.

View Article and Find Full Text PDF