Two-dimensional-zero-dimensional plasmonic hybrids involving defective graphene and transition metals (DGR-TM) have drawn significant interest due to their near-field plasmonic effects in the wide range of the UV-vis-NIR spectrum. In the present work, we carried out extensive investigations on resonance Raman spectroscopy (RRS) and localized surface plasmon resonance (LSPR) from the various DGR-TM hybrids (Au, Ag, and Cu) using micro-Raman, spatial Raman mapping analysis, high-resolution transmission electron microscopy (HRTEM), and LSPR absorption measurements on defective CVD graphene layers. Further, electric field (E) mappings of samples were calculated using the finite domain time difference (FDTD) method to support the experimental findings.
View Article and Find Full Text PDFPoly(3-hexylthiophene) (P3HT) degrades in organic solvents containing dissolved molecular oxygen when irradiated with ultraviolet light. Hence, it is important to develop strategies that can enhance the photostability of P3HT and enhance the device performance. In this work, we report that preparing composites of P3HT with appropriate amounts of multiwalled carbon nanotube (MWCNT) results in superior photostability of P3HT.
View Article and Find Full Text PDF