Publications by authors named "Pratish Gawand"

Microbial processes can produce a wide range of compounds; however, producing complex and long chain hydrocarbons remains a challenge. Aldol condensation offers a direct route to synthesize these challenging chemistries and can be catalyzed by microbes using aldolases. Deoxyribose-5-phosphate aldolase (DERA) condenses aldehydes and/or ketones to β-hydroxyaldehydes, which can be further converted to value-added chemicals such as a precursor to cholesterol-lowering drugs.

View Article and Find Full Text PDF

Metabolic networks are characterized by multiple redundant reactions that do not have a clear biological function. The redundancies in the metabolic networks are implicated in adaptation to random mutations and survival under different environmental conditions. Reactions that are not active under wild-type growth conditions, but get transiently activated after a mutation event such as gene deletion are known as latent reactions.

View Article and Find Full Text PDF

Use of lignocellulosic biomass as a second generation feedstock in the biofuels industry is a pressing challenge. Among other difficulties in using lignocellulosic biomass, one major challenge is the optimal utilization of both 6-carbon (glucose) and 5-carbon (xylose) sugars by industrial microorganisms. Most industrial microorganisms preferentially utilize glucose over xylose owing to the regulatory phenomenon of carbon catabolite repression (CCR).

View Article and Find Full Text PDF

Phenotypic microarray (PM) is a standardized, high-throughput technology for profiling phenotypes of microorganisms, which allows for characterization on around 2,000 different media conditions. The data generated using PM can be incorporated into genome-scale metabolic models to improve their predictive capability. In addition, a comparison of phenotypic profiles of wild-type and gene knockout mutants can give essential information about gene functions of unknown genes.

View Article and Find Full Text PDF