Introduction of selectively chemical reactive groups at the cell surface enables site-specific cell surface labeling and modification opportunity, thus facilitating the capability to study the cell surface molecular structure and function and the molecular mechanism it underlies. Further, it offers the opportunity to change or improve a cell's functionality for interest of choice. In this study, two chemical reactive anchor lipids, phosphatidylethanolamine-poly(ethylene glycol)-dibenzocyclooctyne (DSPE-PEG-DBCO) and cholesterol-PEG-dibenzocyclooctyne (CHOL-PEG-DBCO) were synthesized and their potential application for cell surface re-engineering via lipid fusion were assessed with RAW 264.
View Article and Find Full Text PDFLiposome surface functionalization facilitates numerous potential applications of liposomes, such as enhanced stability, bioactive liposome conjugates, and targeted drug, gene and image agent delivery. Anchoring lipids are needed for grafting ligands of interest and play important roles in ligand grafting density, liposome stability, and liposome chemical and physical characteristics as well. In this report, glyco-functionalized liposome systems based on two kinds of anchoring lipids, phosphatidylethanolamine (PE) and cholesterol (Chol), were prepared by post chemically selective functionalization via Staudinger ligation.
View Article and Find Full Text PDFAdv Colloid Interface Sci
September 2013
Nanoparticles (NPs), due to their size-dependent physical and chemical properties, have shown remarkable potential for a wide range of applications over the past decades. Particularly, the biological compatibilities and functions of NPs have been extensively studied for expanding their potential in areas of biomedical application such as bioimaging, biosensing, and drug delivery. In doing so, surface functionalization of NPs by introducing synthetic ligands and/or natural biomolecules has become a critical component in regard to the overall performance of the NP system for its intended use.
View Article and Find Full Text PDF