The ability to predict and control the formation of bimetallic heterogeneous nanocrystals is desirable for many applications in plasmonics and catalysis. Here, we report the synthesis and characterization of stable, monodisperse, and solution-processed Cu-Ag bimetallic nanoparticles with specific but unusual elemental arrangements that are consistent with a recently developed thermodynamic model. Using air-free scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy, the distribution of Cu and Ag positions was unambiguously identified within individual nanocrystals (NCs), leading to the discovery of a Cu-Ag nanocrescent shape.
View Article and Find Full Text PDFAcid-catalyzed, thermally activated ester cleavage reactions are critical for lithographic patterning processes used in the semiconductor industry. The rates of these high-temperature reactions within polymer thin films are difficult to characterize because of the thermal instability of many polymers and a lack of temperature-resolved measurement techniques. Here we introduce the use of transient laser irradiation to heat a methyladamantane-protected acrylate copolymer to 600 °C in less than a millisecond.
View Article and Find Full Text PDF