Publications by authors named "Pratik Sen"

Nonideality in a binary solvent mixture is manifested through anomalies in various physical properties like viscosity, dielectric constant, polarity, freezing point, boiling point, and so forth. Sometimes, such anomalies become much more prominent, leading to a synergistic behavior, where the physical property of the mixture is way different from its bulk counterparts. Various alcohols/chlorinated methane binary solvent mixtures show such a synergistic behavior.

View Article and Find Full Text PDF

Hydrated deep eutectic solvents (DESs) are recognized for their potential in biocatalysis due to their tunability, biocompatibility, greenness, and ability to keep protein stable and active. However, the mechanisms governing enzyme stability and activity in DES remain poorly understood. Herein, using bromelain as the model enzyme and acetamide (0.

View Article and Find Full Text PDF

Quantum-confined, two-dimensional (2D) CsPbBr (CPB) nanoplates (NPLs) have emerged as exceptional candidates for next-generation blue LEDs and display technology applications. However, their large surface-to-volume ratio and detrimental bromide vacancies adversely affect their photoluminescence quantum yield (PLQY). Additionally, external perturbations such as heat, light exposure, moisture, oxygen, and solvent polarity accelerate their transformation into three-dimensional (3D), green-emitting CPB nanocrystals (NCs), thereby resulting in the loss of their quantum confinement.

View Article and Find Full Text PDF

Macromolecular crowding experiments bridge the gap between in-vivo and in-vitro studies by mimicking some of the cellular complexities like high viscosity and limited space, while still manageable for experiments and analysis. Macromolecular crowding impacts all biological processes and is a focus of contemporary research. Recent reviews have highlighted the effect of crowding on various protein properties.

View Article and Find Full Text PDF

Macromolecular crowding bridges and studies by simulating cellular complexities such as high viscosity and limited space while maintaining the experimental feasibility. Over the last two decades, the impact of macromolecular crowding on protein stability and activity has been a significant topic of study and discussion, though still lacking a thorough mechanistic understanding. This article investigates the role of associated water dynamics on protein stability and activity within crowded environments, using bromelain and Ficoll-70 as the model systems.

View Article and Find Full Text PDF

The photochemistry and photophysics of thiocarbonyl compounds, analogues of carbonyl compounds with sulfur, have long been overshadowed by their counterparts. However, recent interest in visible light reactions has reignited attention toward these compounds due to their unique excited-state properties. This study delves into the ultrafast dynamics of 7-diethylaminothiocoumarin (TC1), a close analogue of the well-known probe molecule coumarin 1 (C1), to estimate intersystem crossing rates, understand the mechanisms of fluorescence and phosphorescence, and evaluate TC1's potential as a solvation dynamics probe.

View Article and Find Full Text PDF

Understanding the intricate factors governing intersystem crossing (ISC) in aromatic carbonyl compounds remains a long-standing interest among researchers. This study unveils the crucial roles of vibration in influencing the ISC of a typical aromatic carbonyl chromophore, benzanthrone, and how hydrogen bonding and solvent viscosity affect these vibrations and, thus, the associated ISC kinetics. We demonstrate that for benzanthrone, the ISC is exceedingly facile in an aprotic solvent, while in protic solvents, the ISC is significantly suppressed through the formation of the hydrogen-bonded state.

View Article and Find Full Text PDF

Various biophysical techniques have been extensively employed to study protein aggregation due to its significance. Traditionally, these methods detect aggregation at micrometer length scales and micromolar concentrations. However, unlike in vitro, protein aggregation typically occurs at nanomolar concentrations in vivo.

View Article and Find Full Text PDF

CsCuI perovskite displays a Stokes-shifted photoluminescence (PL) at 445 nm, attributed to the self-trapped excitons (STEs). Unlike that observed in other perovskite materials, the free-exciton emission is not evidenced in this case. Herein, we reveal the existence of a short-lived high-energy emission centered around 375 nm through the reconstruction of time-resolved emission spectra (TRES), which is independent of the shape/size of CsCuI perovskite.

View Article and Find Full Text PDF

The mechanism of protein stabilization by osmolytes remains one of the most important and long-standing puzzles. The traditional explanation of osmolyte-induced stability through the preferential exclusion of osmolytes from the protein surface has been seriously challenged by the observations like the concentration-dependent reversal of osmolyte-induced stabilization/destabilization. The more modern explanation of protein stabilization/destabilization by osmolytes considers an indirect effect due to osmolyte-induced distortion of the water structure.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) are potential biocatalytic media due to their easy preparation, fine-tuneability, biocompatibility, and most importantly, due to their ability to keep protein stable and active. However, there are many unanswered questions and gaps in our knowledge about how proteins behave in these alternate media. Herein, we investigated solvation dynamics, conformational fluctuation dynamics, and stability of human serum albumin (HSA) in 0.

View Article and Find Full Text PDF

Traditionally, deviation from Stokes-Einstein-Debye (SED) relation in terms of viscosity dependence of medium dynamics, i.e., with ≠ 1, is taken as a signature of dynamic heterogeneity.

View Article and Find Full Text PDF

Over the past 20 years, the most studied and debated aspect of macromolecular crowding is how it affects protein stability. Traditionally, it is explained by a delicate balance between the stabilizing entropic effect and the stabilizing or destabilizing enthalpic effect. However, this traditional crowding theory cannot explain experimental observations like (i) negative entropic effect and (ii) entropy-enthalpy compensation.

View Article and Find Full Text PDF

Conformational heterogeneity is a defining characteristic of a protein and is vital in understanding its function and folding landscape. In the present work, we interrogated the presence of conformational heterogeneity in multi-domain human serum albumin in a domain-specific manner using red edge excitation shift (REES) in its native state and also monitored its variation along the unfolding transition. We also looked into the origin of such conformational heterogeneity by varying the solution viscosity.

View Article and Find Full Text PDF

Fluorescent probes based on semiconducting polymer nanoparticles (NPs) such as polyaniline (PANI) usually require external fluorophore doping to provide fluorescence function. Direct use of PANI-based NPs for bioimaging applications has been limited by PANI's weak blue fluorescence and aggregation-induced quenching in physiological medium. In this report, we developed a facile solid-state synthesis method to produce fluorescent polyaniline nanoparticles (FPNs) that are not only water-soluble but also exhibit high intensity and pH-sensitive red fluorescence.

View Article and Find Full Text PDF

This Feature Article highlights the role of spatial confinement in controlling the fundamental behavior of molecules. Select examples illustrate the value of using space as a tool to control and understand excited-state dynamics through a combination of ultrafast spectroscopy and conventional steady-state methods. Molecules of interest were confined within a closed molecular capsule, derived from a cavitand known as octa acid (OA), whose internal void space is sufficient to accommodate molecules as long as tetracene and as wide as pyrene.

View Article and Find Full Text PDF

The cellular environment is crowded by macromolecules of various sizes, shapes, and charges, which modulate protein structure, function and dynamics. Herein, we contemplated the effect of three different macromolecular crowders: dextran-40, Ficoll-70 and PEG-35 on the structure, active-site conformational dynamics, function and relative domain movement of multi-domain human serum albumin (HSA). All the crowders used in this study have zero charges and similar sizes (at least in the dilute region) but different shapes and compositions.

View Article and Find Full Text PDF

Due to its numerous applications, triplet formation and resulting phosphorescence remain a frontier area of research for over eight decades. Facile intersystem crossing (ISC) is the primary requirement for triplet formation and observation of phosphorescence. The incorporation of a heavy atom in molecules is one of the common approaches employed to facilitate ISC.

View Article and Find Full Text PDF

Although worm-like micelles were invented 35 years ago, its formation pathway remains unclear. Inspired by the fact that a single molecular level experiment could provide meaningful and additional information, especially in a heterogeneous subpopulation, herein, we present a single molecular level study on the formation of wormlike micelles by cetyltrimethylammonium bromide (CTAB) and sodium salicylate (NaSal) in water. Our results indicated a coexistence of normal spherical micelles along with a big wormlike micelle in its formation path.

View Article and Find Full Text PDF

Proteins are dynamic entity with various molecular motions at different timescale and length scale. Molecular motions are crucial for the optimal function of an enzyme. It seems intuitive that these motions are crucial for optimal enzyme activity.

View Article and Find Full Text PDF

The molecular-level structure and dynamics decide the functionality of solvent media. Therefore, a significant amount of effort is being dedicated continually over time in understanding their structural and dynamical features. One intriguing aspect of solvent structure and dynamics is heterogeneity.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) are emerging as new media of choice for biocatalysis due to their environmentally friendly nature, fine-tunability, and potential biocompatibility. This work deciphers the behaviour of bromelain in a ternary DES composed of acetamide, urea, and sorbitol at mole fractions of 0.5, 0.

View Article and Find Full Text PDF

Combining hyperspectral and polarimetric imaging provides a powerful sensing modality with broad applications from astronomy to biology. Existing methods rely on temporal data acquisition or snapshot imaging of spatially separated detectors. These approaches incur fundamental artifacts that degrade imaging performance.

View Article and Find Full Text PDF

Excited anthracene is well-known to photodimerize and not to exhibit excimer emission in isotropic organic solvents. Anthracene (AN) forms two types of supramolecular host-guest complexes (2:1 and 2:2, H:G) with the synthetic host octa acid in aqueous medium. Excitation of the 2:2 complex results in intense excimer emission, as reported previously, while the 2:1 complex, as expected, yields only monomer emission.

View Article and Find Full Text PDF

The low photoluminescence quantum yield of Bi-doped lead halide perovskite nanocrystals (NCs) is a big challenge to the scientific community. This makes them a weak candidate in the optoelectronics field in spite of their better stability than the pure lead analogue. Herein, the reason behind this reduction of quantum yield in hybrid mixed lead-bismuth bromide (MPBBr) NC is investigated and proposed to be due to ultrafast trapping transfer in the core of the NC, and not due to the surface trap states.

View Article and Find Full Text PDF