Induced pluripotent stem cell (iPSC) derived endothelial cells (iECs) have emerged as a promising tool for studying vascular biology and providing a platform for modelling various vascular diseases, including those with genetic origins. Currently, primary ECs are the main source for disease modelling in this field. However, they are difficult to edit and have a limited lifespan.
View Article and Find Full Text PDFCRISPR-based systems have fundamentally transformed our ability to study and manipulate stem cells. We explored the possibility of using catalytically dead Cas9 (dCas9) from S. pyogenes as a platform for targeted epigenetic editing in stem cells to enhance the expression of the eomesodermin gene (EOMES) during differentiation.
View Article and Find Full Text PDFAdvances in synthetic biology have enabled robust control of cell behavior by using tunable genetic circuits to regulate gene expression in a ligand-dependent manner. Such circuits can be used to direct the differentiation of pluripotent stem cells (PSCs) towards desired cell types, but rational design of synthetic gene circuits in PSCs is challenging due to the variable intracellular environment. Here, we provide a framework for implementing synthetic gene switches in PSCs based on combinations of tunable transcriptional, structural, and posttranslational elements that can be engineered as required, using the vanillic acid-controlled transcriptional activator (VanA) as a model system.
View Article and Find Full Text PDFOrthogonal tools for controlling protein function by post-translational modifications open up new possibilities for protein circuit engineering in synthetic biology. Phosphoregulation is a key mechanism of signal processing in all kingdoms of life, but tools to control the involved processes are very limited. Here, we repurpose components of bacterial two-component systems (TCSs) for chemically induced phosphotransfer in mammalian cells.
View Article and Find Full Text PDFSophisticated devices for remote-controlled medical interventions require an electrogenetic interface that uses digital electronic input to directly program cellular behavior. We present a cofactor-free bioelectronic interface that directly links wireless-powered electrical stimulation of human cells to either synthetic promoter-driven transgene expression or rapid secretion of constitutively expressed protein therapeutics from vesicular stores. Electrogenetic control was achieved by coupling ectopic expression of the L-type voltage-gated channel Ca1.
View Article and Find Full Text PDFWe designed and engineered a dye production cassette encoding a heterologous pathway, including human tyrosine hydroxylase and Amanita muscaria 4,5-DOPA dioxygenase, for the biosynthesis of the betaxanthin family of plant and fungal pigments in mammalian cells. The system does not impair cell viability, and can be used as a non-protein reporter system to directly visualize the dynamics of gene expression by profiling absorbance or fluorescence in the supernatant of cell cultures, as well as for fluorescence labeling of individual cells. Pigment profiling can also be multiplexed with reporter proteins such as mCherry or the human model glycoprotein SEAP (secreted alkaline phosphatase).
View Article and Find Full Text PDFThe ability to safely control transgene expression with simple synthetic gene switches is critical for effective gene- and cell-based therapies. In the present study, the signaling pathway controlled by human transient receptor potential (TRP) melastatin 8 (hTRPM8), a TRP channel family member, is harnessed to control transgene expression. Human TRPM8 signaling is stimulated by menthol, an innocuous, natural, cooling compound, or by exposure to a cool environment (15-18 °C).
View Article and Find Full Text PDFExosomes are cell-derived nanovesicles (50-150 nm), which mediate intercellular communication, and are candidate therapeutic agents. However, inefficiency of exosomal message transfer, such as mRNA, and lack of methods to create designer exosomes have hampered their development into therapeutic interventions. Here, we report a set of EXOsomal transfer into cells (EXOtic) devices that enable efficient, customizable production of designer exosomes in engineered mammalian cells.
View Article and Find Full Text PDFSynthetic biology, the synthesis of engineering and biology, has rapidly matured and has dramatically increased the complexity of artificial gene circuits in recent years. The deployment of intricate synthetic gene circuits in mammalian cells requires the establishment of very precise and orthogonal control of transgene expression. In this chapter, we describe methods of modulating the expression of transgenes at the transcriptional level.
View Article and Find Full Text PDFWe previously reported novel technology to differentiate induced pluripotent stem cells (IPSCs) into glucose-sensitive insulin-secreting beta-like cells by engineering a synthetic lineage-control network regulated by the licensed food additive vanillic acid. This genetic network was able to program intricate expression dynamics of the key transcription factors Ngn3 (neurogenin 3, OFF-ON-OFF), Pdx1 (pancreatic and duodenal homeobox 1, ON-OFF-ON) and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A, OFF-ON) to guide the differentiation of IPSC-derived pancreatic progenitor cells to beta-like cells. In the present study, we show for the first time that this network can also program the expression dynamics of Ngn3, Pdx1 and MafA in human embryonic stem cell (hESC)-derived pancreatic progenitor cells and drive differentiation of these cells into glucose-sensitive insulin-secreting beta-like cells.
View Article and Find Full Text PDFChronically deregulated blood-glucose concentrations in diabetes mellitus result from a loss of pancreatic insulin-producing β cells (type 1 diabetes, T1D) or from impaired insulin sensitivity of body cells and glucose-stimulated insulin release (type 2 diabetes, T2D). Here, we show that therapeutically applicable β-cell-mimetic designer cells can be established by minimal engineering of human cells. We achieved glucose responsiveness by a synthetic circuit that couples glycolysis-mediated calcium entry to an excitation-transcription system controlling therapeutic transgene expression.
View Article and Find Full Text PDFBackground & Aims: The liver performs a panoply of complex activities coordinating metabolic, immunologic and detoxification processes. Despite the liver's robustness and unique self-regeneration capacity, viral infection, autoimmune disorders, fatty liver disease, alcohol abuse and drug-induced hepatotoxicity contribute to the increasing prevalence of liver failure. Liver injuries impair the clearance of bile acids from the hepatic portal vein which leads to their spill over into the peripheral circulation where they activate the G-protein-coupled bile acid receptor TGR5 to initiate a variety of hepatoprotective processes.
View Article and Find Full Text PDFSynthetic biology has advanced the design of standardized transcription control devices that programme cellular behaviour. By coupling synthetic signalling cascade- and transcription factor-based gene switches with reverse and differential sensitivity to the licensed food additive vanillic acid, we designed a synthetic lineage-control network combining vanillic acid-triggered mutually exclusive expression switches for the transcription factors Ngn3 (neurogenin 3; OFF-ON-OFF) and Pdx1 (pancreatic and duodenal homeobox 1; ON-OFF-ON) with the concomitant induction of MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A; OFF-ON). This designer network consisting of different network topologies orchestrating the timely control of transgenic and genomic Ngn3, Pdx1 and MafA variants is able to programme human induced pluripotent stem cells (hIPSCs)-derived pancreatic progenitor cells into glucose-sensitive insulin-secreting beta-like cells, whose glucose-stimulated insulin-release dynamics are comparable to human pancreatic islets.
View Article and Find Full Text PDFGraves' disease is an autoimmune disorder that causes hyperthyroidism because of autoantibodies that bind to the thyroid-stimulating hormone receptor (TSHR) on the thyroid gland, triggering thyroid hormone release. The physiological control of thyroid hormone homeostasis by the feedback loops involving the hypothalamus-pituitary-thyroid axis is disrupted by these stimulating autoantibodies. To reset the endogenous thyrotrophic feedback control, we designed a synthetic mammalian gene circuit that maintains thyroid hormone homeostasis by monitoring thyroid hormone levels and coordinating the expression of a thyroid-stimulating hormone receptor antagonist (TSHAntag), which competitively inhibits the binding of thyroid-stimulating hormone or the human autoantibody to TSHR.
View Article and Find Full Text PDFIntegr Biol (Camb)
April 2016
Synthetic biology, an engineering, circuit-driven approach to biology, has developed whole new classes of therapeutics. Unfortunately, these advances have thus far been undercapitalized upon by basic researchers. As discussed herein, using synthetic circuits, one can undertake exhaustive investigations of the endogenous circuitry found in nature, develop novel detectors and better temporally and spatially controlled inducers.
View Article and Find Full Text PDFPrevious studies reported much heterogeneity in baseline neural marker expression by undifferentiated mesenchymal stem cells (MSCs) of animal and human origin, which could confound reproducibility of neural differentiation experiments with MSCs. Nevertheless, basic donor characteristics such as age and gender were unspecified in these previous studies; and relative levels of baseline neural marker expression amongst primary MSCs of different tissue and donor origin have not been compared by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, which is the focus of this study. The results showed that amongst a mixed group of primary adipose and bone marrow-derived MSCs (12-50 years), the observed variability in baseline neural marker expression may be correlated to donor age.
View Article and Find Full Text PDF