Since ectoine is a high-value product, overviewing strategies for identifying novel microbial sources becomes relevant. In the current study, by following a genome mining approach, the ectoine biosynthetic cluster in a tropical marine strain of Nocardiopsis dassonvillei (NCIM 5124) was located and compared with related organisms. Transcriptome analysis of Control and Test samples (with 0 and 5% NaCl, respectively) was carried out to understand salt induced stress response at the molecular level.
View Article and Find Full Text PDFNocardiopsis dassonvillei prevails under harsh environmental conditions and the purpose of this review is to highlight its biological features and recent biotechnological applications. The organism prevails in salt-rich soils/marine systems and some strains endure extreme temperatures and pH. A few isolates are associated with marine organisms and others cause human diseases.
View Article and Find Full Text PDFExtremophilic bacteria growing in saline ecosystems are potential producers of biotechnologically important products including compatible solutes. Ectoine/hydroxyectoine are two such solutes that protect cells and associated macromolecules from osmotic, heat, cold and UV stress without interfering with cellular functions. Since ectoine is a high value product, overviewing strategies for improving yields become relevant.
View Article and Find Full Text PDFThe genome sequence (7,057,619 bp; GC content, 72.07%) of a tropical marine isolate, Nocardiopsis dassonvillei NCIM 5124, containing the biomedically and biotechnologically important gene cluster is reported here.
View Article and Find Full Text PDF16S rRNA gene analysis is the most convenient and robust method for microbiome studies. Inaccurate taxonomic assignment of bacterial strains could have deleterious effects as all downstream analyses rely heavily on the accurate assessment of microbial taxonomy. The use of mock communities to check the reliability of the results has been suggested.
View Article and Find Full Text PDF