Reverse vaccinology (RV) is a significant step in sensible vaccine design. In recent years, many machine learning (ML) methods have been used to improve RV prediction accuracy. However, there are still issues with prediction accuracy and programme accessibility in ML-based RV.
View Article and Find Full Text PDFLinear-B cell epitopes (LBCE) play a vital role in vaccine design; thus, efficiently detecting them from protein sequences is of primary importance. These epitopes consist of amino acids arranged in continuous or discontinuous patterns. Vaccines employ attenuated viruses and purified antigens.
View Article and Find Full Text PDFPrediction of conformational B-cell epitopes (CBCE) is an essential phase for vaccine design, drug invention, and accurate disease diagnosis. Many laboratorial and computational approaches have been developed to predict CBCE. However, laboratorial experiments are costly and time consuming, leading to the popularity of Machine Learning (ML)-based computational methods.
View Article and Find Full Text PDF