Int J Comput Assist Radiol Surg
January 2025
Purpose: Breast cancer remains one of the most prevalent cancers globally, necessitating effective early screening and diagnosis. This study investigates the effectiveness and generalizability of our recently proposed data augmentation technique, attention-guided erasing (AGE), across various transfer learning classification tasks for breast abnormality classification in mammography.
Methods: AGE utilizes attention head visualizations from DINO self-supervised pretraining to weakly localize regions of interest (ROI) in images.
Exercise-induced pulmonary hemorrhage (EIPH) is a common condition in sport horses with negative impact on performance. Cytology of bronchoalveolar lavage fluid by use of a scoring system is considered the most sensitive diagnostic method. Macrophages are classified depending on the degree of cytoplasmic hemosiderin content.
View Article and Find Full Text PDF