Magn Reson Med
October 2022
Purpose: Magnetic resonance elastography (MRE) maps the viscoelastic properties of soft tissues for diagnostic purposes. However, different MRE inversion methods yield different results, which hinder comparison of values, standardization, and establishment of quantitative MRE markers. Here, we introduce an expandable, open-access, webserver-based platform that offers multiple inversion techniques for multifrequency, 3D MRE data.
View Article and Find Full Text PDFCardiac diffusion tensor imaging (DTI) is an emerging technique for the in vivo characterisation of myocardial microstructure, and there is a growing need for its validation and standardisation. We sought to establish the accuracy, precision, repeatability and reproducibility of state-of-the-art pulse sequences for cardiac DTI among 10 centres internationally. Phantoms comprising 0%-20% polyvinylpyrrolidone (PVP) were scanned with DTI using a product pulsed gradient spin echo (PGSE; N = 10 sites) sequence, and a custom motion-compensated spin echo (SE; N = 5) or stimulated echo acquisition mode (STEAM; N = 5) sequence suitable for cardiac DTI in vivo.
View Article and Find Full Text PDFTo design and validate a rapid Simultaneous Multi-slice (SMS) Magnetic Resonance Elastography technique (MRE), which combines SMS acquisition, in-plane undersampling and an existing rapid Magnetic Resonance Elastography (MREr) scheme to allow accelerated data acquisition in healthy volunteers and comparison against MREr. SMS-MREr sequence was developed by incorporating SMS acquisition scheme into an existing MREr sequence that accelerates MRE acquisition by acquiring data during opposite phases of mechanical vibrations. The MREr sequence accelerated MRE acquisition by acquiring data during opposite phases of mechanical vibrations.
View Article and Find Full Text PDFStiffness plays an important role in diagnosing renal fibrosis. However, kidney stiffness is altered by perfusion changes in many kidney diseases. Therefore, the aim of the current study is to determine the correlation of kidney stiffness with water intake.
View Article and Find Full Text PDFThe purpose of this study is 1) to demonstrate reproducibility of spin echo-echo planar imaging (SE-EPI) magnetic resonance elastography (MRE) to estimate kidney stiffness; and 2) to compare SE-EPI MRE and gradient recalled echo (GRE) MRE-derived stiffness estimations in various anatomical regions of the kidney. Kidney MRE was performed on 33 healthy subjects (8 for SE-EPI MRE reproducibility and 25 for comparison with GRE MRE; age range: 22-66 years) in a 3 T MRI scanner. To demonstrate SE-EPI MRE reproducibility, subjects were scanned for the first scan and then asked to leave the scan room and repositioned again for the second (repeat) scan.
View Article and Find Full Text PDFPurpose: Noninvasive measurement of mechanical properties of brain tissue using magnetic resonance elastography (MRE) has been a promising method for investigating neurologic disorders such as multiple sclerosis, hydrocephalus, and Alzheimer's. However, because of the regional and directional dependency of brain stiffness, estimating anisotropic stiffness is important. This study investigates isotropic and anisotropic stiffness as a function of age as well as the correlation between isotropic and anisotropic stiffness.
View Article and Find Full Text PDFThis study determines the reproducibility of magnetic resonance elastography (MRE) derived brain stiffness in normal volunteers and compares it against pseudotumor patients before and after lumbar puncture (LP). MRE was performed on 10 normal volunteers for reproducibility and 14 pseudotumor patients before and after LP. During LP, opening and closing cerebrospinal fluid (CSF) pressures were recorded before and after removal of CSF and correlated to brain stiffness.
View Article and Find Full Text PDFPurpose To determine the repeatability of magnetic resonance (MR) elastography-derived shear stiffness measurements of the intervertebral disc (IVD) taken throughout the day and their relationship with IVD degeneration and subject age. Materials and Methods In a cross-sectional study, in vivo lumbar MR elastography was performed once in the morning and once in the afternoon in 47 subjects without current low back pain (IVDs = 230; age range, 20-71 years) after obtaining written consent under approval of the institutional review board. The Pfirrmann degeneration grade and MR elastography-derived shear stiffness of the nucleus pulposus and annulus fibrosus regions of all lumbar IVDs were assessed by means of principal frequency analysis.
View Article and Find Full Text PDFPurpose: Previous studies of breast MR elastography (MRE) evaluated the technique at magnetic field strengths of 1.5 Tesla (T) with the breast in contact with the driver. The aim of this study is to evaluate breast stiffness measurements and their reproducibility using a soft sternal driver at 3T and compare the results with qualitative measures of breast density.
View Article and Find Full Text PDFPurpose: Aortic wall shear stress (WSS ) alters endothelial function, which in-turn changes aortic wall stiffness leading to remodeling in different disease states. Therefore, the aims of this study are to determine normal physiologic correlations between: (1) Magnetic Resonance Elastography (MRE)-derived aortic wall stiffness (WS ) and WSS ; (2) WS and mean velocity; (3) WS and pulse wave velocity (PWV);( 4) WS and mean peak flow; and (5) WS , WSS and age using MRE and 4D-flow MRI in the abdominal aorta in healthy human subjects.
Materials And Methods: Cardiac-gated aortic MRE and 4D-flow MRI data were acquired in 24 healthy volunteers using a 3 Tesla scanner.