Publications by authors named "Prasun Mandal"

Red emission in crystals has been observed with an ultra-small-single-benzenic -fluorophore () with a molecular weight (MW) of only 197 Da, bettering the literature report of fluorophores with the lowest MW = 252 Da. Supramolecular extensive hydrogen-bonding and J-aggregate type centrosymmetric discrete-dimers or a 1D chain of s led to red emission ( = 610-636 nm) in crystals. Unlike in the solution phase showing one absorption band, in thin films and in crystals the transition from the S state to both the S state and S state becomes feasible.

View Article and Find Full Text PDF

-Fluorophores (MFs) are unique ultra-light (in terms of molecular weight (MW)) fluorophores exhibiting luminescence with a wide colour gamut ranging from blue to the NIR. Single benzenic MFs are easy to synthesize, are quite bright (with photoluminescence quantum yield (PLQY) as high as 63%) and exhibit very large Stokes shift (as high as 260 nm (8965 cm)), with large solvatochromic shift (as high as 175 nm), and very long excited-state-lifetime (as high as 26 ns) for such ultra-light fluorophores. An emission maximum of ≥600 nm has been achieved with an MF in a polar medium having a MW of only 177 g mol and in a nonpolar medium having MW of only 255 g mol; therefore, a large-sized π-conjugated -fluorophore is no longer a prerequisite for red/NIR emission.

View Article and Find Full Text PDF

Objective: The current systematic and meta-static review aimed to analyze the correlation between isolated gastrocnemius contracture and plantar fasciitis and the effectiveness of gastroc recession surgery in the treatment of plantar fasciitis.

Methodology: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to conduct this meta-analysis. A literature search was carried out on the following databases, including Google Scholar, PubMed, EMBASE, and the Cochrane databases with the appropriate medical subject headings (MeSH) to identify the eligible articles.

View Article and Find Full Text PDF

Background: Calcaneal fractures are serious injuries that mainly affect young, active people. As a result, these fractures may cause long-term impairment and have a major socioeconomic impact. The current updated systematic review and meta-analysis were conducted to evaluate the functional outcomes, re-operative risk, and complications associated with the treatment of displaced intra-articular calcaneal.

View Article and Find Full Text PDF

Zn-alloyed CsPb(Cl/Br) perovskite nanocrystals (PNCs) have been synthesized and used as a model system for Mn doping in order to understand the effect of Mn doping on exciton dynamics. While keeping the PL emission maximum and PLQY of both PNC samples nearly the same, the radiative decay rate of the host band decreases ∼6.5 times and the non-radiative decay rate increases ∼2.

View Article and Find Full Text PDF

Intrinsic hole trapping as well as hole detrapping have not been observed for any quantum dot (QD) or perovskite nanocrystal (PNC) system. Moreover, amplitude variation of intrinsic hole trapping (or detrapping) has not been reported at all for any QD or PNC system. However, for a CuInS-based core/alloy-shell (CAS) QD system, (a) both intrinsic hole trapping and detrapping have been observed and (b) very significant amplitude variations of hole trapping (∼16 to ∼42%) and hole detrapping (∼44 to 23%) have been observed.

View Article and Find Full Text PDF

A "one-pot one-step" synthesis method of Core/Alloy Shell (CAS) quantum dots (QDs) offers the scope of large scale synthesis in a less time consuming, more economical, highly reproducible and high-throughput manner in comparison to "multi-pot multi-step" synthesis for Core/Shell (CS) QDs. Rapid initial nucleation, and smooth & uniform shell growth lead to the formation of a compositionally-gradient alloyed hetero-structure with very significantly reduced interfacial trap density in CAS QDs. Thus, interfacial strain gets reduced in a much smoother manner leading to enhanced confinement for the photo-generated charge carriers in CAS QDs.

View Article and Find Full Text PDF

The importance of alloy-shelling in optically robust Core/Alloy-Shell (CAS) QDs has been described from structural and energetic aspects. Unlike fluorescent dyes, both Core/Shell (CS) and CAS QDs exhibit excitation-energy-dependent photoluminescence quantum yield (PLQY). For both CdSe and InP CAS QDs (with metal- and nonmetal-based alloy-shelling, respectively), with increasing excitation energy, (a) the ultrafast rise-time or relaxation-time to the band-edge increases and (b) the magnitude of the normalized bleach signal decreases.

View Article and Find Full Text PDF

The hydrophobicity of room-temperature ionic liquids (RTILs) has been shown to have a very significant effect on the optical and structural properties of and in RTILs. The average excited state lifetime of neat RTILs has been shown to be increasing with increasing hydrophobicity of the RTILs. By employing pico-nanosecond-based fluorescence anisotropy decay, the volume of the nanoaggregates in neat RTILs have been calculated.

View Article and Find Full Text PDF

Optical robustness, uniformity, , , etc. dictate the applicability of nanocrystals. Based on a series of multimodal statistical analyses such as the Kolmogorov-Smirnov test, Lévy statistics, etc.

View Article and Find Full Text PDF

With an increasing bromide content in CsPb(Br/Cl) perovskite nanocrystals (PNCs), the steady state photoluminescence quantum yield value increases from 28% to 50% to 76%. Ultrafast transient absorption analyses reveal that the normalized band edge population increases more than two-fold on excitation at the band edge with increasing bromide content, and the hot exciton trapping time increases from 450 fs to 520 fs to 700 fs with increasing bromide content. Ultrasensitive single particle spectroscopic analyses reveal that the peak of the ON fraction distribution increases from 0.

View Article and Find Full Text PDF

There is no literature report of simultaneously achieving near-unity PLQY (ensemble level) and highly suppressed blinking (ultrasensitive single-particle spectroscopy (SPS) level) in a toxic-metal-free QD. In this Letter we report accomplishing near-unity PLQY (96%) and highly suppressed blinking (>80% ON fraction) in a toxic-metal-free CuInS/ZnSeS Core/Alloy-Shell (CAS) QD. In addition, (i) gigantic enhancement of PLQY (from 15% (Core) to 96% (CAS QD)), (ii) ultrahigh stability over 1 year without significant reduction of PLQY at the ensemble level, (iii) high magnitude (nearly 3 times) of electron detrapping/trapping rate, and (iv) very long ON duration (∼2 min) without blinking at the SPS level enable this ultrasmall (∼3.

View Article and Find Full Text PDF

Single crystals of optoelectronic materials that respond to external stimuli, such as mechanical, light, or heat, are immensely attractive for next generation smart materials. Here we report single crystals of a green fluorescent protein (GFP) chromophore analogue with irreversible mechanical bending and associated unusual enhancement of the fluorescence, which is attributed to the strained molecular packing in the perturbed region. Soft crystalline materials with such fluorescence intensity modulations occurring in response to mechanical stimuli under ambient pressure conditions will have potential implications for the design of technologically relevant tunable fluorescent materials.

View Article and Find Full Text PDF

Perovskite quantum dots (PQDs) are known to be defect-tolerant, possessing a clean band gap with optically inactive benign defect states. However, we show that there exist significant deep trap states beyond the conduction band minimum, although the extent of shallow trap states is observed to be minimal. The extent of deep trap states beyond the conduction band minimum seems to be significant in PQDs; however, the extent is less than that of even optically robust CdSe- and InP-based core/alloy-shell QDs.

View Article and Find Full Text PDF

Suppressed blinking has been reported in large (diameter ∼14.1 nm) core/shell InP quantum dots (QDs) under reduced air environment. We report here suppressed blinking with approximately four times smaller (diameter ∼3.

View Article and Find Full Text PDF

Herein, the instantaneous synthesis of highly crystalline, uniform-sized ( 11.3 ± 0.1 nm), blue-to-green to yellow to red-emitting all-inorganic perovskite quantum dots (CsPbBr and mixed halide PQDs) was achieved at room temperature under an open-air atmosphere (no glove box) through halide exchange in the solution phase employing easily available, inexpensive non-metal-based halide sources such as HCl and HI.

View Article and Find Full Text PDF

The claim that the analysis regarding resonance energy transfer should have been made using different equations than those that we have used is negated based on the following points: (1) we are well aware of the equations the author has provided in his comment. The equation (eqn (3) mentioned below) that the author has written is undoubtedly too simple to describe the complex system delineated in our original paper. This particular equation is perhaps OK for simple dye (donor and acceptor) systems; however, such a simple equation is never enough for nanoparticle/quantum dot systems.

View Article and Find Full Text PDF

We report the synthesis and dynamical behavior of a carbon dot (CD) with near 100% photoluminescence quantum yield in water for a very large pH range (1-12). This CD exhibits a rotational correlational time of only ∼130 ps, signifying the whole CD is not exhibiting photoluminescence. Unlike most carbon-based nanoparticles (which act as a quencher of fluorescence), this CD could act as a donor, and the Förster model could account for the experimental observables for the resonance energy transfer (RET) experiment quite well.

View Article and Find Full Text PDF

CdSe-based core/gradient alloy shell/shell semiconductor quantum dots (CGASS QDs) have been shown to be optically quite superior compared to core-shell QDs. However, very little is known about CGASS QDs at the single particle level. Photoluminescence blinking dynamics of four differently emitting (blue (λem = 510), green (λem = 532), orange (λem = 591), and red (λem = 619)) single CGASS QDs having average sizes <∼7 nm have been probed in our home-built total internal reflection fluorescence (TIRF) microscope.

View Article and Find Full Text PDF

It has been shown recently that aggregated dyes are responsible for very high fluorescence in a carbon dot (CD). However, what is the location of the fluorescing moiety in CD? Is it inside the CD or attached to the CD's surface? In order to answer these intriguing questions regarding the location of the fluorescing moiety in a CD, we performed rotational anisotropy decay dynamics and resonance energy transfer (RET) dynamics. Rotational correlation time of ∼120 picoseconds nullifies the fact that the whole CD is fluorescing.

View Article and Find Full Text PDF

The molecular origin of the photoluminescence of carbon dots (CDs) is not known. This restricts the design of CDs with desired optical properties. We have synthesized CDs starting from carbohydrates by employing a simple synthesis method.

View Article and Find Full Text PDF

The competition between excited-state proton transfer (ESPT) and torsion plays a central role in the photophysics of fluorescent proteins of the green fluorescent protein (GFP) family and their chromophores. Here, it was investigated in a single GFP chromophore analogue bearing o-hydroxy and p-diethylamino substituents, OHIM. The light-induced dynamics of OHIM was studied by femtosecond transient absorption spectroscopy, at different pH.

View Article and Find Full Text PDF

The effect of structural rigidity towards enhancement of fluorescence quantum yield of GFP chromophore analogues has been documented. In the present study, a new way of enhancing the fluorescence quantum yield of two ortho-meta GFP chromophore analogues meta-methoxy-ortho-hydroxy-benzylimidazolidinone (abbreviated as mOMe-HBDI) and meta-diethylamino-ortho-hydroxyl imidazolidinone (abbreviated as MOHIM) has been reported. This enhancement is controlled by the H-bond accepting ability (denoted as β value) of the solvent and happens only in the case of GFP chromophore analogues having ortho (hydroxyl)-meta (electron donating group) and not in the case of analogues having a para electron donating group.

View Article and Find Full Text PDF

Dual fluorescence of GFP chromophore analogues has been observed for the first time. OHIM (o-hydroxy imidazolidinone) shows only a charge transfer (CT) band, CHBDI (p-cyclicamino o-hydroxy benzimidazolidinone) shows a comparable intensity CT and PT (proton transfer) band, and MHBDI (p-methoxy o-hydroxy benzimidazolidinone) shows a higher intensity PT band. It could be shown that the differential optical behavior is not due to conformational variation in the solid or solution phase.

View Article and Find Full Text PDF

Z-E Isomerisation because of rotation around the exocyclic double bond (known as the τ-twist) and not any other internal conversion has been reported to be the major nonradiative decay channel for non-hydroxylic unconstrained para and meta GFP chromophore analogues. The equation Φf + 2ΦZE = 1 has been shown to hold well for both para and meta GFP chromophore analogues. If the above equation holds true, then upon reducing the extent of Z-E isomerisation (ΦZE), the fluorescence quantum yield (Φf) should increase.

View Article and Find Full Text PDF