Publications by authors named "Prashanth T Bhaskar"

Akt is frequently activated in human cancers. However, it is unknown whether systemic inhibition of a single Akt isoform could regress cancer progression in cancers that are not driven by Akt activation. We systemically deleted Akt1 after tumor onset in p53(-/-) mice, which develop tumors independently of Akt activation.

View Article and Find Full Text PDF

Accelerated glucose metabolism is a common feature of cancer cells. Hexokinases catalyze the first committed step of glucose metabolism. Hexokinase 2 (HK2) is expressed at high level in cancer cells, but only in a limited number of normal adult tissues.

View Article and Find Full Text PDF

FoxO transcription factors and TORC1 are conserved downstream effectors of Akt. Here, we unraveled regulatory circuits underlying the interplay between Akt, FoxO, and mTOR. Activated FoxO1 inhibits mTORC1 by TSC2-dependent and TSC2-independent mechanisms.

View Article and Find Full Text PDF

The current concept is that Tsc-deficient cells are sensitized to apoptosis due to the inhibition of Akt activity by the negative feedback mechanism induced by the hyperactive mTORC1. Unexpectedly, however, we found that Tsc1/2-deficient cells exhibit increased resistance to serum deprivation-induced apoptosis. mTORC1 hyperactivity contributes to the apoptotic resistance of serum-deprived Tsc1/2-deficient cells in part by increasing the growth factor-independent expression of hexokinase II (HKII) and GLUT1.

View Article and Find Full Text PDF

The regulatory circuits that control the activities of the two distinct target of rapamycin (TOR) complexes, TORC1 and TORC2, and of Akt have been a focus of intense research in recent years. It has become increasingly evident that these regulatory circuits control some of the most fundamental aspects of metabolism, cell growth, proliferation, survival, and differentiation at both the cellular and organismal levels. As such, they also play a pivotal role in the genesis of diseases including cancer, diabetes, aging, and degenerative diseases.

View Article and Find Full Text PDF

Akt contributes to tumorigenesis by inhibiting apoptosis. Here we establish that Akt is required for normal cell proliferation and susceptibility to oncogenesis independently of its antiapoptotic activity. Partial ablation of Akt activity by deleting Akt1 inhibits cell proliferation and oncogenesis.

View Article and Find Full Text PDF