Publications by authors named "Prashanta Kharel"

Integrated femtosecond pulse and frequency comb sources are critical components for a wide range of applications, including optical atomic clocks, microwave photonics, spectroscopy, optical wave synthesis, frequency conversion, communications, lidar, optical computing and astronomy. The leading approaches for on-chip pulse generation rely on mode-locking inside microresonators with either third-order nonlinearity or with semiconductor gain. These approaches, however, are limited in noise performance, wavelength and repetition rate tunability .

View Article and Find Full Text PDF

Thin-film lithium niobate (LN) photonic integrated circuits (PICs) could enable ultrahigh performance in electro-optic and nonlinear optical devices. To date, realizations have been limited to chip-scale proof-of-concepts. Here we demonstrate monolithic LN PICs fabricated on 4- and 6-inch wafers with deep ultraviolet lithography and show smooth and uniform etching, achieving 0.

View Article and Find Full Text PDF

To date, microscale and nanoscale optomechanical systems have enabled many proof-of-principle quantum operations through access to high-frequency (gigahertz) phonon modes that are readily cooled to their thermal ground state. However, minuscule amounts of absorbed light produce excessive heating that can jeopardize robust ground-state operation within these microstructures. In contrast, we demonstrate an alternative strategy for accessing high-frequency (13 GHz) phonons within macroscopic systems (centimeter scale) using phase-matched Brillouin interactions between two distinct optical cavity modes.

View Article and Find Full Text PDF

Quantum states of mechanical motion can be important resources for quantum information, metrology and studies of fundamental physics. Recent demonstrations of superconducting qubits coupled to acoustic resonators have opened up the possibility of performing quantum operations on macroscale motional modes, which can act as long-lived quantum memories or transducers. In addition, they can potentially be used to test decoherence mechanisms in macroscale objects and other modifications to standard quantum theory.

View Article and Find Full Text PDF

Mechanical objects have important practical applications in the fields of quantum information and metrology as quantum memories or transducers for measuring and connecting different types of quantum systems. The field of electromechanics is in pursuit of a robust and highly coherent device that couples motion to nonlinear quantum objects such as superconducting qubits. Here, we experimentally demonstrate a high-frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction with a cooperativity of 260.

View Article and Find Full Text PDF

Photonic-integrated circuits have emerged as a scalable platform for complex quantum systems. A central goal is to integrate single-photon detectors to reduce optical losses, latency and wiring complexity associated with off-chip detectors. Superconducting nanowire single-photon detectors (SNSPDs) are particularly attractive because of high detection efficiency, sub-50-ps jitter and nanosecond-scale reset time.

View Article and Find Full Text PDF