Publications by authors named "Prashant Kodgire"

OmpA, OmpK, and OmpV are crucial for the pathogenesis of Vibrio cholerae, functioning within the bacterium's outer membrane; they present significant potential as candidates for vaccine development. Due to their intrinsic β-sheet richness, these OMPs tend to form inclusion bodies whenever overexpression is attempted. To achieve a native-like structure, detergents can be utilized during the refolding of OMPs from inclusion bodies.

View Article and Find Full Text PDF
Article Synopsis
  • Activation-induced cytidine deaminase (AID) triggers somatic hypermutation and class-switch recombination, which are key for creating effective, pathogen-specific antibodies.
  • The accessibility of chromatin influences AID's expression and activity, with chromatin remodelers playing a crucial role in enabling AID to target immunoglobulin (Ig) genes.
  • Epigenetic modifications, such as DNA methylation and histone changes, significantly affect AID regulation and its targeting, forming a complex interplay known as the ACE phenomenon, which is vital for potential therapeutic advancements.
View Article and Find Full Text PDF

Chiral amines are essential motifs in pharmaceuticals, agrochemicals, and specialty chemicals. While traditional chemical routes to chiral amines often lack stereoselectivity and require harsh conditions, biocatalytic methods using engineered enzymes can offer high efficiency and selectivity under sustainable conditions. This review discusses recent advances in protein engineering of transaminases, oxidases, and other enzymes to improve catalytic performance.

View Article and Find Full Text PDF

Organophosphorus compounds (OP) are highly toxic pesticides and nerve agents widely used in agriculture and chemical warfare. The extensive use of these chemicals has severe environmental implications, such as contamination of soil, water bodies, and food chains, thus endangering ecosystems and biodiversity. Plants absorb pesticide residues, which then enter the food chain and accumulate in the body fat of both humans and animals.

View Article and Find Full Text PDF

Cancer research has extensively explored various factors contributing to cancer development, including chemicals, drugs, smoking, and obesity. However, the role of bacterial infections in cancer induction remains underexplored. In particular, the mechanisms underlying -induced B-cell lymphoma, a potential consequence of bacterial infection, have received little attention.

View Article and Find Full Text PDF

Organophosphates pesticide (OP) toxicity through water resources is a large concern globally among all the emerging pollutants. Detection of OPs is a challenge which needs to be addressed considering the hazardous effects on the health of human beings. In the current research thin film biosensors of recombinant, Organophosphorus acid anhydrolase (OPAA) enzyme along with carbon quantum dots (CQDs) immobilized in thin films were developed.

View Article and Find Full Text PDF

Activation-induced cytidine deaminase (AID) is the key mediator of antibody diversification in activated B-cells by the process of somatic hypermutation (SHM) and class switch recombination (CSR). Targeting AID to the Ig genes requires transcription (initiation and elongation), enhancers, and its interaction with numerous factors. Furthermore, the HIRA chaperon complex, a regulator of chromatin architecture, is indispensable for SHM.

View Article and Find Full Text PDF

Indiscriminate use of antibiotics to treat bacterial infections has brought unmanageable antibiotic-resistant strains into existence. spp. represents one such gram-negative enteric pathogenic group with more than 100 species, infecting humans and fish.

View Article and Find Full Text PDF

Diagnosis of prostate cancer (PC) has posed a challenge worldwide due to the sophisticated and costly diagnostics tools, which include DRE, TRUS, GSU, PET/CT scan, MRI, and biopsy. These diagnostic techniques are very helpful in the detection of PCs; however, all the techniques have their serious limitations. Biosensors are easier to fabricate and do not require any cutting-edge technology as required for other imaging techniques.

View Article and Find Full Text PDF

Activation-induced cytidine deaminase (AID) is a key player that initiates antibody diversification in activated B-cell. AID mediates somatic hypermutation (SHM) and class switch recombination (CSR) via the deamination of cytosine to uracil at the Ig locus, resulting in the production of high-affinity antibodies. AID is predominantly restricted to Ig genes, whereas off-targeting of AID leads to lymphocyte-related malignancies.

View Article and Find Full Text PDF

Salmonella is a diverse Gram-negative bacterium that represents the major disease burden worldwide. According to WHO, Salmonella is one of the fourth global causes of diarrhoeal disease. Antibiotic resistance is a worldwide health concern, and Salmonella spp.

View Article and Find Full Text PDF

The human population is dependent on agriculture for its food requirements and survival. Several insecticides and pesticides have found their use for improvements in agricultural yields. Organophosphates (OP) are one of the many compounds used as insecticides and pesticides.

View Article and Find Full Text PDF

Helicobacter pylori is a Gram-negative bacterium that causes chronic inflammations in the stomach area and is involved in ulcers, which can develop into gastric malignancies. H. pylori attaches and colonizes to the human epithelium using some of their outer membrane proteins (OMPs).

View Article and Find Full Text PDF

Accumulation and exposure of organophosphate pesticides are of great concern today owing to their abundant usage and potential health hazards. Harmful effects of organophosphate pesticide exposure and limitations of the available treatment methods necessitate the development of reliable, selective, cost-effective, and sensitive methods of detection. We developed a novel biosensor based on the enzymatic action of recombinant organophosphorus hydrolase (OPH) expressed in E.

View Article and Find Full Text PDF

Indiscriminate use of organophosphorus (OP)-based insecticides is a great concern to human health because of bioaccumulation-induced health hazards. Potentially fatal consequences and limited treatment methods of OP poisoning necessitate the need for the development of reliable, selective, cost-effective, and sensitive methods of OP detection. To tackle this issue, the development of effective devices and methods is required to sensitively detect as well as degrade OPs.

View Article and Find Full Text PDF

, a gram-negative bacterium that causes cholera, has already caused seven major pandemics across the world and infects roughly 1.3-4 million people every year. Cholera treatment primarily involves oral rehydration therapy supplemented with antibiotics.

View Article and Find Full Text PDF

Activated B-cells diversify their antibody repertoire via somatic hypermutation (SHM) and class switch recombination (CSR). SHM is restricted to the variable region, whereas, CSR is confined to the constant region of immunoglobulin () genes. Activation-induced cytidine deaminase (AID) is a crucial player in the diversification of antibodies in the activated B-cell.

View Article and Find Full Text PDF

The G-quadruplex structure is a highly conserved drug target for preventing infection of several human pathogens. We tried to explore G-quadruplex forming motifs as promising drug targets in the genome of Salmonella enterica that causes enteric fever in humans. Herein, we report three highly conserved G-quadruplex motifs (SE-PGQ-1, 2, and 3) in the genome of Salmonella enterica.

View Article and Find Full Text PDF

SRSF1, a member of the SR protein family, is an important splicing factor and regulator of splicing. Multiple splicing isoforms have been reported for this gene. SRSF1-3, a splicing isoform of SRSF1, is necessary for AID-dependent SHM of IgV genes.

View Article and Find Full Text PDF

Somatic hypermutation (SHM) of Ig genes is initiated by activation-induced cytidine deaminase (AID) and requires target gene transcription. A splice isoform of SRSF1, SRSF1-3, is necessary for AID-dependent SHM of IgV genes. Nevertheless, its exact molecular mechanism of action in SHM remains unknown.

View Article and Find Full Text PDF

Agricultural advancements focusing on increasing crop production have led to excessive usage of insecticides and pesticides, resulting in leaching and accumulation of these highly toxic chemicals in soil, water, and the food-chain. Organophosphorus (OP) compounds are the most commonly used insecticides and pesticides, which cause a wide range of long-lasting and life-threatening conditions. Due to the acute toxicity and long-term side effects of OP compounds, their timely, on-the-spot and rapid detection has gained importance, for efficient healthcare management.

View Article and Find Full Text PDF

AID initiates both somatic hypermutation (SHM) and class switch recombination (CSR) in Ig genes. AID-induced mutations are linked with transcription initiation and elongation. Transcription occurs in the context of chromatin and thus RNA PolII and AID need to deal with nucleosomes.

View Article and Find Full Text PDF

Activation-induced cytidine deaminase (AID), primarily expressed in activated mature B lymphocytes in germinal centers, is the key factor in adaptive immune response against foreign antigens. AID is responsible for producing high-affinity and high-specificity antibodies against an infectious agent, through the physiological DNA alteration processes of antibody genes by somatic hypermutation (SHM) and class-switch recombination (CSR) and functions by deaminating deoxycytidines (dC) to deoxyuridines (dU), thereby introducing point mutations and double-stranded chromosomal breaks (DSBs). The beneficial physiological role of AID in antibody diversification is outweighed by its detrimental role in the genesis of several chronic immune diseases, under non-physiological conditions.

View Article and Find Full Text PDF

The molecular origin behind the concentration-dependent intrinsic blue fluorescence of human serum albumin (HSA) is not known yet. This unusual blue fluorescence is believed to be a characteristic feature of amyloid-like fibrils of protein/peptide and originates due to the delocalization of peptide bond electrons through the extended hydrogen bond networks of cross-β-sheet structure. Herein, by combining the results of spectroscopy, size exclusion chromatography, native gel electrophoresis, and confocal microscopy, we have shown that the intrinsic blue fluorescence of HSA exclusively originates from oligomeric interfaces devoid of any amyloid-like fibrillar structure.

View Article and Find Full Text PDF