The wound dressings' lack of antioxidant and antibacterial properties, and delayed wound healing limit their use in wound treatment and management. Recent advances in dressing materials are aimed at improving the limitations discussed above. Therefore, the aim of this study includes the preparation and characterization of oxidized hydroxyethyl cellulose (OHEC) and ferulic acid-grafted chitosan (CS-FA) hydrogel loaded with green synthesized selenium nanoparticles (Se NPs) (OHEC-CS-FA-Se NPs named as nanohydrogel) for diabetic wound healing.
View Article and Find Full Text PDFObjective: This review aims to summarize the current management of type 2 diabetes principles, including oral hypoglycemic agents, types of insulin administration, diet maintenance, and various molecular approaches.
Methods: A literature search was conducted in different databases such as Scopus, ScienceDirect, Google Scholar, and Web of Science by using the following keywords: type-2 diabetes mellitus (T2DM), first-line and second-line treatment, oral hypoglycemic agents, insulin administration, diet/nutritional therapy, gene and stem cell therapy, and diabetic complications.
Results: The first-line treatment of T2DM includes administering oral hypoglycemic agents (OHAs) and second-line treatment by insulin therapy and some OHAs like Sulfonylurea's (SU).
Biomaterials are being extensively used in regenerative medicine including tissue engineering applications, as these enhance tissue development, repair, and help in the process of angiogenesis. Wound healing is a crucial biological process of regeneration of ruptured tissue after getting injury to the skin and other soft tissue in humans and animals. Besides, the accumulation of microbial biofilms around the wound surface can increase the risk and physically obstruct the wound healing activity, and may even lead to amputation.
View Article and Find Full Text PDF