Quorum sensing is being investigated as an alternative therapeutic strategy in antibacterial drug discovery programs aimed at combatting bacterial resistance. LsrK is an autoinducer-2 kinase (belongs to the sugar kinase family), playing a key role in the phosphorylation of the autoinducer-2 (AI-2) signaling molecules involved in quorum sensing. Inhibiting LsrK could result in reduced pathogenicity by interfering with quorum sensing signaling.
View Article and Find Full Text PDFAntibiotic resistance is posing a continuous threat to global public health and represents a huge burden for society as a whole. In the past decade, the interference with bacterial quorum sensing (QS) (i.e.
View Article and Find Full Text PDFIn the era of increased antibiotic resistance, targeting enzymes involved in bacterial communication (quorum sensing) represents a new strategy to fight bacterial infections. LsrK is a kinase responsible for the phosphorylation of autoinducer-2, a signaling molecule involved in quorum sensing. Inhibiting LsrK would lead to quorum sensing inactivation and interfere with the pathogenesis.
View Article and Find Full Text PDFPseudomonas aeruginosa is an opportunistic human pathogen recognized as a critical threat by the World Health Organization because of the dwindling number of effective therapies available to treat infections. Over the past decade, it has become apparent that the glyoxylate shunt plays a vital role in sustaining P. aeruginosa during infection scenarios.
View Article and Find Full Text PDF