Publications by authors named "Prasanthi Maram"

Excessive neutrophil influx, their released neutrophil extracellular traps (NETs), and extracellular histones are associated with disease severity in influenza-infected patients. Neutrophil chemokine receptor CXC chemokine receptor 2 (CXCR2) is a critical target for suppressing neutrophilic inflammation. Herein, temporal dynamics of neutrophil activity and NETosis were investigated to determine the optimal timing of treatment with the CXCR2 antagonist, SCH527123 (2-hydroxy-N,N-dimethyl-3-[2-([(R)-1-(5-methyl-furan-2-yl)-propyl]amino)-3,4-dioxo-cyclobut-1-enylamino]-benzamide), and its efficacy together with antiviral agent, oseltamivir, was tested in murine and piglet influenza-pneumonia models.

View Article and Find Full Text PDF

() is a highly virulent, intracellular Gram-negative bacterial pathogen. Acute infection by aerosol route causes pneumonic tularemia, characterized by nodular hemorrhagic lesions, neutrophil-predominant influx, necrotic debris, fibrin deposition, and severe alveolitis. suppresses activity of neutrophils by impairing their respiratory burst and phagocytic activity.

View Article and Find Full Text PDF

Excessive neutrophils recruited during influenza pneumonia contribute to severe lung pathology through induction of neutrophil extracellular traps (NETs) and release of extracellular histones. We have recently shown that activation of platelets during influenza enhances pulmonary microvascular thrombosis, leading to vascular injury and hemorrhage. Emerging evidence indicates that activated platelets also interact with neutrophils, forming neutrophil-platelet aggregates (NPAs) that contribute to tissue injury.

View Article and Find Full Text PDF

Although exaggerated host immune responses have been implicated in influenza-induced lung pathogenesis, the etiologic factors that contribute to these events are not completely understood. We previously demonstrated that neutrophil extracellular traps exacerbate pulmonary injury during influenza pneumonia. Histones are the major protein components of neutrophil extracellular traps and are known to have cytotoxic effects.

View Article and Find Full Text PDF