Purpose: In response to the COVID-19 pandemic, new policy waivers permitted reimbursement of telehealth services in urban settings. The aim of this study was to assess patient satisfaction with telehealth services during the COVID-19 pandemic in an outpatient urban nephrology practice.
Methods: Patients who had virtual encounters were asked to complete an online survey regarding their experiences with telehealth services.
The 12q13-q14 chromosomal region is recurrently amplified in 25% of fusion-positive (FP) rhabdomyosarcoma (RMS) cases and is associated with a poor prognosis. To identify amplified oncogenes in FP RMS, we compared the size, gene composition, and expression of 12q13-q14 amplicons in FP RMS with those of other cancer categories (glioblastoma multiforme, lung adenocarcinoma, and liposarcoma) in which 12q13-q14 amplification frequently occurs. We uncovered a 0.
View Article and Find Full Text PDFThe PAX3 gene encodes a member of the PAX family of transcription factors that is characterized by a highly conserved paired box motif. The PAX3 protein is a transcription factor consisting of an N-terminal DNA binding domain (containing a paired box and homeodomain) and a C-terminal transcriptional activation domain. This protein is expressed during development of skeletal muscle, central nervous system and neural crest derivatives, and regulates expression of target genes that impact on proliferation, survival, differentiation and motility in these lineages.
View Article and Find Full Text PDFEvidence of cancer immunosurveillance and immunoediting processes has been primarily demonstrated in mouse models of chemically induced oncogenesis. Although these models are very tractable, they are characterized by high mutational loads that represent a minority of human cancers. In this study, we sought to determine whether cancer immunosurveillance and immunoediting could be demonstrated in a more clinically relevant oncogene-induced model of carcinogenesis, the MMTV-PyMT (PyMT) mammary carcinoma model.
View Article and Find Full Text PDFWe describe the development of automated workflows that support computed-aided drug discovery (CADD) and molecular dynamics (MD) simulations and are included as part of the National Biomedical Computational Resource (NBCR). The main workflow components include: file-management tasks, ligand force field parameterization, receptor-ligand molecular dynamics (MD) simulations, job submission and monitoring on relevant high-performance computing (HPC) resources, receptor structural clustering, virtual screening (VS), and statistical analyses of the VS results. The workflows aim to standardize simulation and analysis and promote best practices within the molecular simulation and CADD communities.
View Article and Find Full Text PDF