In this review, we provide an evidence-based approach to determine the cellular and systemic actions of two structurally similar flavonoids, apigenin and chrysin. We have clearly evaluated and charted the overlapping and diverging properties of these two sister flavonoids. Based on two separate Omics-based approaches by our group and independent reports from others, the cholesterol-lowering properties have been revealed.
View Article and Find Full Text PDFPolyglutamine diseases comprise a cluster of genetic disorders involving neurodegeneration and movement disabilities. In polyglutamine diseases, the target proteins become aberrated due to polyglutamine repeat formation. These aberrant proteins form the root cause of associated complications.
View Article and Find Full Text PDFThe prominent flavonoids apigenin and chrysin have been demonstrated to have systemic benefits. Our previous work was first to establish the impact of apigenin and chrysin on cellular transcriptome. In the current study, we have revealed the ability of apigenin and chrysin to alter the cellular metabolome based on our untargeted metabolomics.
View Article and Find Full Text PDFThe COVID-19 pandemic has had a great impact on global health and is an economic burden. Even with vaccines and anti-viral medications we are still scrambling to get a balance. In this perspective, we have shed light upon an extremely feasible approach by which we can control the SARS-CoV-2 infection and the associated complications, bringing some solace to this ongoing turmoil.
View Article and Find Full Text PDFGlucocorticoids are not only endogenous hormones but are also administered exogenously as an anti-inflammatory and immunosuppressant for their long-term beneficial and lifesaving effects. Because of their potent anti-inflammatory property and ability to curb the cytokines, they are administered as lifesaving steroids. This property is not only made use of in the cardiovascular system but also in other major organ systems and networks.
View Article and Find Full Text PDFLeptin is a well-known hunger-sensing peptide hormone. The role of leptin in weight gain and metabolic homeostasis has been explored for the past two decades. In this review, we have tried to shed light upon the impact of leptin signaling on health and diseases.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
August 2022
The various roles of muscle secretory factors and myokines have been well studied, but in recent decades, the role of myocyte-specific microRNAs (myomiRs) has gained momentum. These myomiRs are known to play regulatory roles in muscle health in general, both skeletal muscle and cardiac muscle. In this review, we have focused on the significance of a myomiR termed miR-133a in cardiovascular health.
View Article and Find Full Text PDFThere is no known single therapeutic drug for treating hypercholesterolemia that comes with negligible systemic side effects. In the current study, using next generation RNA sequencing approach in mouse embryonic fibroblasts we discovered that two structurally related flavonoid compounds. Apigenin and Chrysin exhibited moderate blocking ability of multiple transcripts that regulate rate limiting enzymes in the cholesterol biosynthesis pathway.
View Article and Find Full Text PDFCardiovascular and renal complications cover a wide array of diseases. The most commonly known overlapping complications include cardiac and renal fibrosis, cardiomyopathy, cardiac hypertrophy, hypertension, and cardiorenal failure. The known or reported causes for the abovementioned complications include injury, ischemia, infection, and metabolic stress.
View Article and Find Full Text PDFDrug Discov Today
January 2019
Mitochondrial homeostasis is important for the health and well-being of organ systems and organisms. Mitochondrial dysfunction is known to be the cause and consequence of metabolic diseases, including obesity, diabetes, cancer, neurodegeneration, cerebrovascular, and cardiovascular disease. For cardiovascular tissue, which relies mostly on oxidative phosphorylation, the role of mitochondria is inevitable.
View Article and Find Full Text PDFBackground: To examine the association between low-density lipoprotein (LDL) and high-density lipoprotein (HDL) levels and liver enzyme functions.
Methods: The National Health and Nutrition Examination Survey (NHANES) data from 1999 to 2012 was used to examine the association between liver enzymes and lipid levels amongst adults in the United States.
Results: Sixteen percent adults had ALT > 40 U/L, 11% had AST > 40 U/L, and 96% had ALP > 120 U/L.
Am J Physiol Cell Physiol
August 2017
Niemann-Pick C1 (NPC) disease, an autosomal recessive lipid trafficking disorder caused by loss-of-function mutations in the NPC1 gene, is characterized by progressive neurodegeneration resulting in cognitive impairment, ataxia and early death. Little is known about the cellular pathways leading to neuron loss. Here, we studied the effects of diminishing expression of cystatin B, an endogenous inhibitor of cathepsins B, H and L, on the development of NPC neuropathology.
View Article and Find Full Text PDFObjective: Glycogen metabolism has emerged as a mediator in the control of energy homeostasis and studies in murine models reveal that adipose tissue might contain glycogen stores. Here we investigated the physio(patho)logical role of glycogen in human adipose tissue in the context of obesity and insulin resistance.
Methods: We studied glucose metabolic flux of hypoxic human adipoctyes by nuclear magnetic resonance and mass spectrometry-based metabolic approaches.
To examine whether the long non-coding RNA (lncRNA) metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is altered in the endothelial cells in response to glucose and the significance of such alteration. We incubated human umbilical vein endothelial cells with media containing various glucose levels. We found an increase in MALAT1 expression peaking after 12 hrs of incubation in high glucose.
View Article and Find Full Text PDFCardiac diseases have been extensively studied following diabetes and altered metabolism has been implicated in its initiation. In this context, there is a shift from glucose utilization to predominantly fatty acid metabolism. We have focused on the micro- and macro-environments that the heart uses to provide fatty acids to the cardiomyocyte.
View Article and Find Full Text PDFDiabetic cardiomyopathy is a cascade of complex events leading to eventual failure of the heart and cardiac fibrosis being considered as one of its major causes. miR-133a is one of the most abundantly expressed microRNAs in the heart. We investigated the role of miR-133a during severe hyperglycaemia.
View Article and Find Full Text PDFGlucocorticoids include steroid hormones released from the adrenal cortex or synthetic analogues developed for various inflammatory and immune disorders. GCs are known to play an important role in maintaining the body's metabolic balance, but their irregular activity has been associated with complications like Cushing's syndrome, insulin resistance, and heart disease. Conventional GC action is through their nuclear receptor activation, but specific and non-specific membrane bound receptor mediated non-genomic actions have also been reported.
View Article and Find Full Text PDFDiabetic cardiomyopathy is a term used to describe cardiac muscle damage-induced heart failure. Multiple structural and biochemical reasons have been suggested to induce this disorder. The most prominent feature of the diabetic myocardium is attenuated insulin signalling that reduces survival kinases (Akt), potentially switching on protein targets like FoxOs, initiators of cell death.
View Article and Find Full Text PDFCardiomyocyte cell death is a major contributing factor for diabetic cardiomyopathy, and multiple mechanisms have been proposed for its development. We hypothesized that following diabetes, an increased nuclear presence of the Forkhead transcription factor, FoxO1, could turn on cardiac cell death through mediation of nitrosative stress. Streptozotocin (100 mg/kg) was used to induce irreversible hyperglycemia in Wistar rats, and heart tissues and blood samples extracted starting from 1 to 4 days.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
February 2012
Objective: Heparanase is an endoglycosidase that specifically cleaves carbohydrate chains of heparan sulfate. We have recently reported that high fatty acid increased the nuclear content of endothelial heparanase. Here, we examined the mechanism and the consequences behind this nuclear translocation of heparanase.
View Article and Find Full Text PDFObjective: In diabetes, when glucose consumption is restricted, the heart adapts to use fatty acid (FA) exclusively. The majority of FA provided to the heart comes from the breakdown of circulating triglyceride (TG), a process catalyzed by lipoprotein lipase (LPL) located at the vascular lumen. The objective of the current study was to determine the mechanisms behind LPL processing and breakdown after moderate and severe diabetes.
View Article and Find Full Text PDFObesity due to nutrient excess leads to chronic pathologies including type 2 diabetes and cardiovascular disease. Related to nutrient excess, FoxO1 has a role in regulating fatty acid uptake and oxidation and triglyceride (TG) storage by mechanisms that are largely unresolved. We examined the mechanism behind palmitate (PA)-induced TG accumulation in cardiomyocytes.
View Article and Find Full Text PDFGlucocorticoids increase pyruvate dehydrogenase kinase-4 (PDK4) mRNA and protein expression, which phosphorylates pyruvate dehydrogenase, thereby preventing the formed pyruvate from undergoing mitochondrial oxidation. This increase in PDK4 expression is mediated by the mandatory presence of Forkhead box other factors (FoxOs) in the nucleus. In the current study, we examined the importance of the nongenomic effects of dexamethasone (Dx) in determining the compartmentalization of FoxO and hence its transcriptional activity.
View Article and Find Full Text PDF