Microfluidic concentration gradient generators (-CGGs) are critical in various biochemical assays, including cell migration, drug screening, and antimicrobial susceptibility testing. However, current -CGGs rely on integration with flow systems, limiting their scalability and widespread adoption owing to limited infrastructure and technical expertise. Hence, there is a need for flowless diffusional gradient generators capable of standalone operation, thereby improving throughput and usability.
View Article and Find Full Text PDFCorrection for 'Design and validation of a flowless gradient generating microfluidic device for high-throughput drug testing' by Ketaki Bachal , 2023, , 261-271, https://doi.org/10.1039/D2LC00879C.
View Article and Find Full Text PDFMimicking nature using artificial technologies has always been a quest/fascination of scientists and researchers of all eras. This paper characterizes viscous fingering instability-based, lithography-less, spontaneous, and scalable process towards fabrication of 3D patterns like nature-inspired honeycomb structures with ultra-high aspect ratio walls. Rich experimental characterization data on volatile polymer solution evolution in a uniport lifted Hele-Shaw cell (ULHSC) is represented on a non-dimensional phase plot.
View Article and Find Full Text PDFMicrofluidic concentration gradient generators are useful in drug testing, drug screening, and other cellular applications to avoid manual errors, save time, and labor. However, expensive fabrication techniques make such devices prohibitively costly. Here, in the present work, we developed a microfluidic concentration gradient generator (μCGG) using a recently proposed non-conventional photolithography-less method.
View Article and Find Full Text PDFDrug testing is a vital step in the identification of the potential efficacy of any new/existing drug and/or combinations of drugs. The conventional methods of testing the efficacy of new drugs using multiwell plates are time consuming and prone to evaporation loss and manual error. Microfluidic devices with automated generation of concentration gradients provide a promising alternative.
View Article and Find Full Text PDFA continuous, sealed endothelial membrane is essential for the blood-brain barrier (BBB) to protect neurons from toxins present in systemic circulation. Endothelial cells are critical sensors of the capillary environment, where factors like fluid shear stress (FSS) and systemic signaling molecules activate intracellular pathways that either promote or disrupt the BBB. The brain vasculature exhibits complex heterogeneity across the bed, which is challenging to recapitulate in BBB microfluidic models with fixed dimensions and rectangular cross-section microchannels.
View Article and Find Full Text PDFRecent pandemic caused by COVID-19 has motivated lockdown in several countries for long duration and will have a long lasting impact on the social life and economics world wide. India is no exception although showing relatively delayed increase in number of cases. Multilayered diagnostics for mass scaled screening is inevitable during and especially after the peak is passed and life is moving towards normalcy.
View Article and Find Full Text PDFThe pursuit of mimicking complex multiscale systems has been a tireless effort with many successes but a daunting task ahead. A new perspective to engineer complex cross-linked meshes and branched/tree-like structures at different scales is presented here. Control over Saffman-Taylor instability which otherwise randomly rearranges viscous fluid in a 'lifted Hele-Shaw cell' is proposed for the same.
View Article and Find Full Text PDFNature, in quest for the best designs has shaped its vital systems into fractal geometries. Effectual way of spontaneous fabrication of scalable, ordered fractal-like structures by controlling Saffman-Taylor instability in a lifted Hele-Shaw cell is deployed here. In lifted Hele-Shaw cell uncontrolled penetration of low-viscosity fluid into its high-viscosity counterpart is known to develop irregular, non-repeatable, normally short-lived, branched patterns.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2011
Solid-solution Pb(Zn(1/3)Nb(2/3))O(3)-PbTiO(3) (PZN-PT) single crystals, touted as next-generation piezoelectric materials, have been studied extensively in the past decade. This work addresses the advantages and limitations of transducers made of transverse mode PZN-(6-7)%PT single crystals of [110](L) X [001](T)(P) cut. This cut exhibits superior electromechanical properties, with k(31) ≈ 0.
View Article and Find Full Text PDF