Unlabelled: Glucolipotoxicity, caused by combined hyperglycemia and hyperlipidemia, results in β-cell failure and type 2 diabetes (T2D) via cellular stress-related mechanisms. Activating transcription factor 4 (Atf4) is an essential effector of stress response. We show here that expression in β-cells is dispensable for glucose homeostasis in young mice, but it is required for β-cell function during aging and under obesity-related metabolic stress.
View Article and Find Full Text PDFThe gain-of-function mutation in the TALK-1 K channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion.
View Article and Find Full Text PDFEndocrine islet b cells comprise heterogenous cell subsets. Yet when/how these subsets are produced and how stable they are remain unknown. Addressing these questions is important for preventing/curing diabetes, because lower numbers of b cells with better secretory function is a high risk of this disease.
View Article and Find Full Text PDFMitochondrial Ca ([Ca]) homeostasis is critical for β-cell function and becomes disrupted during the pathogenesis of diabetes. [Ca] uptake is dependent on elevations in cytoplasmic Ca ([Ca]) and endoplasmic reticulum Ca ([Ca]) release, both of which are regulated by the two-pore domain K channel TALK-1. Here, utilizing a novel β-cell TALK-1-knockout (β-TALK-1-KO) mouse model, we found that TALK-1 limited β-cell [Ca] accumulation and ATP production.
View Article and Find Full Text PDFThe gain-of-function mutation in the TALK-1 K channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion (GSIS).
View Article and Find Full Text PDFG-coupled somatostatin or α2-adrenergic receptor activation stimulated β-cell NKA activity, resulting in islet Ca fluctuations. Furthermore, intra-islet paracrine activation of β-cell G-GPCRs and NKAs by δ-cell somatostatin secretion slowed Ca oscillations, which decreased insulin secretion. β-cell membrane potential hyperpolarization resulting from G-GPCR activation was dependent on NKA phosphorylation by Src tyrosine kinases.
View Article and Find Full Text PDFAim: To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels impact glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) modulation of islet Ca handling and insulin secretion.
Methods: The impact of liraglutide (GLP-1 analogue) on islet Ca handling, HCN currents and insulin secretion was monitored with fluorescence microscopy, electrophysiology and enzyme immunoassays, respectively. Furthermore, liraglutide-mediated β-to-δ-cell cross-communication was assessed following selective ablation of either mouse islet δ or β cells.
The melastatin subfamily of the transient receptor potential channels (TRPM) are regulators of pancreatic β-cell function. TRPM7 is the most abundant islet TRPM channel; however, the role of TRPM7 in β-cell function has not been determined. Here, we used various spatiotemporal transgenic mouse models to investigate how TRPM7 knockout influences pancreatic endocrine development, proliferation and function.
View Article and Find Full Text PDFObjective: Genetic and acquired abnormalities contribute to pancreatic β-cell failure in diabetes. Transcription factors Hnf4α (MODY1) and FoxO1 are respective examples of these two components and act through β-cell-specific enhancers. However, their relationship is unclear.
View Article and Find Full Text PDFMaturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic disorders of impaired pancreatic β cell function. The mechanisms underlying MODY include β cell KATP channel dysfunction (e.g.
View Article and Find Full Text PDFNewly differentiated pancreatic β cells lack proper insulin secretion profiles of mature functional β cells. The global gene expression differences between paired immature and mature β cells have been studied, but the dynamics of transcriptional events, correlating with temporal development of glucose-stimulated insulin secretion (GSIS), remain to be fully defined. This aspect is important to identify which genes and pathways are necessary for β-cell development or for maturation, as defective insulin secretion is linked with diseases such as diabetes.
View Article and Find Full Text PDFKey Points: Tetraspanin (TSPAN) proteins regulate many biological processes, including intracellular calcium (Ca ) handling. TSPAN-7 is enriched in pancreatic islet cells; however, the function of islet TSPAN-7 has not been identified. Here, we characterize how β-cell TSPAN-7 regulates Ca handling and hormone secretion.
View Article and Find Full Text PDFObjective: Elevations in pancreatic α-cell intracellular Ca ([Ca]) lead to glucagon (GCG) secretion. Although glucose inhibits GCG secretion, how lactate and pyruvate control α-cell Ca handling is unknown. Lactate enters cells through monocarboxylate transporters (MCTs) and is also produced during glycolysis by lactate dehydrogenase A (LDHA), an enzyme expressed in α-cells.
View Article and Find Full Text PDFGlucose-stimulated insulin secretion from pancreatic -cells is controlled by ATP-regulated potassium (K) channels composed of Kir6.2 and sulfonylurea receptor 1 (SUR1) subunits. The K channel-opener diazoxide is FDA-approved for treating hyperinsulinism and hypoglycemia but suffers from off-target effects on vascular K channels and other ion channels.
View Article and Find Full Text PDFPancreatic α-cells exhibit oscillations in cytosolic Ca (Ca), which control pulsatile glucagon (GCG) secretion. However, the mechanisms that modulate α-cell Ca oscillations have not been elucidated. As β-cell Ca oscillations are regulated in part by Ca-activated K (K) currents, this work investigated the role of K in α-cell Ca handling and GCG secretion.
View Article and Find Full Text PDFIn the developing pancreas, transient Neurog3-expressing progenitors give rise to four major islet cell types: α, β, δ, and γ; when and how the Neurog3 cells choose cell fate is unknown. Using single-cell RNA-seq, trajectory analysis, and combinatorial lineage tracing, we showed here that the Neurog3 cells co-expressing Myt1 (i.e.
View Article and Find Full Text PDFIslet β cells from newborn mammals exhibit high basal insulin secretion and poor glucose-stimulated insulin secretion (GSIS). Here we show that β cells of newborns secrete more insulin than adults in response to similar intracellular Ca concentrations, suggesting differences in the Ca sensitivity of insulin secretion. Synaptotagmin 4 (Syt4), a non-Ca binding paralog of the β cell Ca sensor Syt7, increased by ∼8-fold during β cell maturation.
View Article and Find Full Text PDFObjective: Single-cell RNA sequencing studies have revealed that the type-2 diabetes associated two-pore domain K (K2P) channel TALK-1 is abundantly expressed in somatostatin-secreting δ-cells. However, a physiological role for TALK-1 in δ-cells remains unknown. We previously determined that in β-cells, K flux through endoplasmic reticulum (ER)-localized TALK-1 channels enhances ER Ca leak, modulating Ca handling and insulin secretion.
View Article and Find Full Text PDFCytokines present during low-grade inflammation contribute to β-cell dysfunction and diabetes. Cytokine signaling disrupts β-cell glucose-stimulated Ca influx (GSCI) and endoplasmic reticulum (ER) Ca ([Ca]) handling, leading to diminished glucose-stimulated insulin secretion (GSIS). However, cytokine-mediated changes in ion channel activity that alter β-cell Ca handling remain unknown.
View Article and Find Full Text PDFCa handling by the endoplasmic reticulum (ER) serves critical roles in controlling pancreatic β cell function and becomes perturbed during the pathogenesis of diabetes. ER Ca homeostasis is determined by ion movements across the ER membrane, including K flux through K channels. We demonstrated that K flux through ER-localized TALK-1 channels facilitated Ca release from the ER in mouse and human β cells.
View Article and Find Full Text PDFWe used mice lacking , a key component of the β-cell K-channel, to analyze the effects of a sustained elevation in the intracellular Ca concentration ([Ca]) on β-cell identity and gene expression. Lineage tracing analysis revealed the conversion of β-cells lacking into pancreatic polypeptide cells but not to α- or δ-cells. RNA-sequencing analysis of FACS-purified β-cells confirmed an increase in gene expression and revealed altered expression of more than 4,200 genes, many of which are involved in Ca signaling, the maintenance of β-cell identity, and cell adhesion.
View Article and Find Full Text PDFGlucose-stimulated insulin secretion (GSIS) relies on β-cell Ca2+ influx, which is modulated by the two-pore-domain K+ (K2P) channel, TALK-1. A gain-of-function polymorphism in KCNK16, the gene encoding TALK-1, increases risk for developing type-2 diabetes. While TALK-1 serves an important role in modulating GSIS, the regulatory mechanism(s) that control β-cell TALK-1 channels are unknown.
View Article and Find Full Text PDFβ-arrestins are critical signalling molecules that regulate many fundamental physiological functions including the maintenance of euglycemia and peripheral insulin sensitivity. Here we show that inactivation of the β-arrestin-2 gene, barr2, in β-cells of adult mice greatly impairs insulin release and glucose tolerance in mice fed with a calorie-rich diet. Both glucose and KCl-induced insulin secretion and calcium responses were profoundly reduced in β-arrestin-2 (barr2) deficient β-cells.
View Article and Find Full Text PDFThe two-pore-domain potassium (K2P) channel TREK-2 serves to modulate plasma membrane potential in dorsal root ganglia c-fiber nociceptors, which tunes electrical excitability and nociception. Thus, TREK-2 channels are considered a potential therapeutic target for treating pain; however, there are currently no selective pharmacological tools for TREK-2 channels. Here we report the identification of the first TREK-2 selective activators using a high-throughput fluorescence-based thallium (Tl) flux screen (HTS).
View Article and Find Full Text PDF