Publications by authors named "Prasad S Hendre"

Although Lam. (Moringaceae) is a multipurpose tree with remarkable nutritional and therapeutic benefits, it is undervalued and neglected in Kenya, as the local people associate it with famine and poverty. The present study aims to assess and document the traditional knowledge on use and management as well as production constraints of the species among the Mijikenda community in Kilifi County, Kenya.

View Article and Find Full Text PDF

Gynandropsis gynandra (Cleomaceae) is a cosmopolitan leafy vegetable and medicinal plant, which has also been used as a model to study C4 photosynthesis due to its evolutionary proximity to C3 Arabidopsis (Arabidopsis thaliana). Here, we present the genome sequence of G. gynandra, anchored onto 17 main pseudomolecules with a total length of 740 Mb, an N50 of 42 Mb and 30,933 well-supported gene models.

View Article and Find Full Text PDF

The nutrient-rich tubers of the greater yam, Dioscorea alata L., provide food and income security for millions of people around the world. Despite its global importance, however, greater yam remains an orphan crop.

View Article and Find Full Text PDF

A defining component of agroforestry parklands across Sahelo-Sudanian Africa (SSA), the shea tree () is central to sustaining local livelihoods and the farming environments of rural communities. Despite its economic and cultural value, however, not to mention the ecological roles it plays as a dominant parkland species, shea remains semi-domesticated with virtually no history of systematic genetic improvement. In truth, shea's extended juvenile period makes traditional breeding approaches untenable; but the opportunity for genome-assisted breeding is immense, provided the foundational resources are available.

View Article and Find Full Text PDF

Two of the most economically important plants in the Artocarpus genus are jackfruit (A. heterophyllus Lam.) and breadfruit (A.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers assembled a draft genome for S. aethiopicum, revealing numerous repetitive sequences and identifying over 37,000 gene models, with significant expansions in disease resistance genes linked to historical retrotransposon activity.
  • * The findings facilitate crop improvement by providing breeders with valuable genetic information, including single-nucleotide polymorphisms related to drought tolerance, enhancing the breeding potential not only for S. aethiopicum but also for related Solanaceae crops.
View Article and Find Full Text PDF
Article Synopsis
  • The African Orphan Crops Consortium (AOCC) is sequencing the genomes of 101 neglected African crops to combat malnutrition and food insecurity in sub-Saharan Africa.
  • The initiative, established in 2011, focuses on improving the nutritional quality of local crops that are often overlooked but are vital for the dietary needs and cultural practices of African farmers.
  • The project is using advanced genomic technologies and training African scientists to develop resilient crop varieties while emphasizing partnerships across various sectors for effective implementation.
View Article and Find Full Text PDF

Background: The expanding world population is expected to double the worldwide demand for food by 2050. Eighty-eight percent of countries currently face a serious burden of malnutrition, especially in Africa and south and southeast Asia. About 95% of the food energy needs of humans are fulfilled by just 30 species, of which wheat, maize, and rice provide the majority of calories.

View Article and Find Full Text PDF

Coffee breeding and improvement efforts can be greatly facilitated by availability of a large repository of simple sequence repeats (SSRs) based microsatellite markers, which provides efficiency and high-resolution in genetic analyses. This study was aimed to improve SSR availability in coffee by developing new genic-/genomic-SSR markers using in-silico bioinformatics and streptavidin-biotin based enrichment approach, respectively. The expressed sequence tag (EST) based genic microsatellite markers (EST-SSRs) were developed using the publicly available dataset of 13,175 unigene ESTs, which showed a distribution of 1 SSR/3.

View Article and Find Full Text PDF

Next generation sequencing (NGS) technologies have revolutionized the pace and scale of genomics- and transcriptomics-based SNP discovery across different plant and animal species. Herein, 72-base paired-end Illumina sequencing was employed for high-throughput, parallel and large-scale SNP discovery in 41 growth-related candidate genes in Eucalyptus camaldulensis. Approximately 100 kb of genome from 96 individuals was amplified and sequenced using a hierarchical DNA/PCR pooling strategy and assembled over corresponding E.

View Article and Find Full Text PDF

Biotic or abiotic stress can cause considerable damage to crop plants that can be managed by building disease resistance in the cultivated gene pool through breeding for disease resistance genes (R-genes). R-genes, conferring resistance to diverse pathogens or pests share a high level of similarity at the DNA and protein levels in different plant species. This property of R-genes has been successfully employed to isolate putative resistance gene analogues (RGAs) using a PCR-based approach from new plant sources.

View Article and Find Full Text PDF

Background: Species-specific microsatellite markers are desirable for genetic studies and to harness the potential of MAS-based breeding for genetic improvement. Limited availability of such markers for coffee, one of the most important beverage tree crops, warrants newer efforts to develop additional microsatellite markers that can be effectively deployed in genetic analysis and coffee improvement programs. The present study aimed to develop new coffee-specific SSR markers and validate their utility in analysis of genetic diversity, individualization, linkage mapping, and transferability for use in other related taxa.

View Article and Find Full Text PDF

Genic microsatellites or EST-SSRs derived from expressed sequence tags (ESTs) are desired because these are inexpensive to develop, represent transcribed genes, and often a putative function can be assigned to them. In this study we investigated 2,553 coffee ESTs (461 from the public domain and 2,092 in-house generated ESTs) for identification and development of genic microsatellite markers. Of these, 2,458 ESTs (all >100 bp in size) were searched for SSRs using MISA--search module followed by stackPACK clustering that revealed a total of 425 microsatellites in 331 (13.

View Article and Find Full Text PDF