Publications by authors named "Prasad N Paradkar"

Biting midges ( spp.) are important vectors of several insect borne arboviruses but are underrepresented in terms of availability of high-resolution genomic resources. We assembled and annotated complete mitochondrial genomes for two species, namely and which are proven vectors for Bluetongue Virus (BTV).

View Article and Find Full Text PDF

Accurate counting of mosquito larval populations is essential for maintaining optimal conditions and population control within rearing facilities, assessing disease transmission risks, and implementing effective vector control measures. While existing methods for counting mosquito larvae have faced challenges such as the impact on larval mortality rate, multiple parameters adjustment and limitations in availability and affordability, recent advancements in artificial intelligence, particularly in AI-driven visual analysis, hold promise for addressing these issues. Here, we introduce LarvaeCountAI, an open-source convolutional neural network (CNN)-based tool designed to automatically count Culex annulirostris mosquito larvae from videos captured in laboratory environments.

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV) is transmitted by species of mosquitoes. In 2022, JEV belonging to a previously unrecognized lineage of genotype IV (GIV) caused a major outbreak of JE in South-eastern Australia, resulting in human cases and affecting piggeries. has previously been implicated as the major vector of JEV in northern Australia where the virus has circulated since its first detection in 1995.

View Article and Find Full Text PDF

Monitoring the flight behaviour of mosquitoes is crucial for assessing their fitness levels and understanding their potential role in disease transmission. Existing methods for tracking mosquito flight behaviour are challenging to implement in laboratory environments, and they also struggle with identity tracking, particularly during occlusions. Here, we introduce FlightTrackAI, a robust convolutional neural network (CNN)-based tool for automatic mosquito flight tracking.

View Article and Find Full Text PDF

Our understanding of heterochromatin nanostructure and its capacity to mediate gene silencing in a living cell has been prevented by the diffraction limit of optical microscopy. Thus, here to overcome this technical hurdle, and directly measure the nucleosome arrangement that underpins this dense chromatin state, we coupled fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) between histones core to the nucleosome, with molecular editing of heterochromatin protein 1 alpha (HP1α). Intriguingly, this super-resolved readout of nanoscale chromatin structure, alongside fluorescence fluctuation spectroscopy (FFS) and FLIM-FRET analysis of HP1α protein-protein interaction, revealed nucleosome arrangement to be differentially regulated by HP1α oligomeric state.

View Article and Find Full Text PDF

Mosquito-borne diseases such as malaria, dengue, Zika, and chikungunya cause significant morbidity and mortality globally, resulting in over 600,000 deaths from malaria and around 36,000 deaths from dengue each year, with millions of people infected annually, leading to substantial economic losses. The existing mosquito control measures, such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), helped to reduce the infections. However, mosquito-borne diseases are still among the deadliest diseases, forcing us to improve the existing control methods and look for alternative methods simultaneously.

View Article and Find Full Text PDF

Mosquitoes of the genus are responsible for a large burden of zoonotic virus transmission globally. Collectively, they play a significant role in the transmission of medically significant diseases such as Japanese encephalitis virus and West Nile virus. Climate change, global trade, habitat transformation and increased urbanisation are leading to the establishment of mosquitoes in new geographical regions.

View Article and Find Full Text PDF

Understanding the flight behaviour of dengue-infected mosquitoes can play a vital role in various contexts, including modelling disease risks and developing effective interventions against dengue. Studies on the locomotor activity of dengue-infected mosquitoes have often faced challenges in terms of methodology. Some studies used small tubes, which impacted the natural movement of the mosquitoes, while others that used cages did not capture the three-dimensional flights, despite mosquitoes naturally flying in three dimensions.

View Article and Find Full Text PDF
Article Synopsis
  • Escalating vector disease burdens, particularly from mosquitoes, necessitate innovative tools for tackling these health risks, with CRISPR-Cas technologies emerging as a key player in genetic manipulation.
  • While traditional CRISPR-Cas9 systems have been effective for DNA targeting, they are ineffective against RNA viruses, leading to the development of the Cas13 family as a promising tool for RNA targeting.
  • The study introduces REAPER, an antiviral strategy that activates in mosquitoes to destroy viral RNA, significantly reducing virus replication and even killing infected mosquitoes, thereby enhancing efforts to combat virus transmission through these vectors.
View Article and Find Full Text PDF

Background: Mosquito-borne diseases exert a huge impact on both animal and human populations, posing substantial health risks. The behavioural and fitness traits of mosquitoes, such as locomotion and fecundity, are crucial factors that influence the spread of diseases. In existing egg-counting tools, each image requires separate processing with adjustments to various parameters such as intensity threshold and egg area size.

View Article and Find Full Text PDF

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern such as Omicron hampered efforts in controlling the ongoing coronavirus disease 2019 pandemic due to their ability to escape neutralizing antibodies induced by vaccination or prior infection, highlighting the need to develop broad-spectrum vaccines and therapeutics. Most human monoclonal antibodies (mAbs) reported to date have not demonstrated true pan-sarbecovirus neutralizing breadth especially against animal sarbecoviruses. Here, we report the isolation and characterization of highly potent mAbs targeting the receptor binding domain (RBD) of huACE2-dependent sarbecovirus from a SARS-CoV survivor vaccinated with BNT162b2.

View Article and Find Full Text PDF

Mosquito-borne diseases cause a huge burden on public health worldwide. The viruses that cause these diseases impact the behavioural traits of mosquitoes, including locomotion and feeding. Understanding these traits can help in improving existing epidemiological models and developing effective mosquito traps.

View Article and Find Full Text PDF

Mosquito-borne diseases like dengue and malaria cause a significant global health burden. Unfortunately, current insecticides and environmental control strategies aimed at the vectors of these diseases are only moderately effective in decreasing disease burden. Understanding and manipulating the interaction between the mosquito holobiont (i.

View Article and Find Full Text PDF

Excitotoxicity, a neuronal death process in neurological disorders such as stroke, is initiated by the overstimulation of ionotropic glutamate receptors. Although dysregulation of proteolytic signaling networks is critical for excitotoxicity, the identity of affected proteins and mechanisms by which they induce neuronal cell death remain unclear. To address this, we used quantitative N-terminomics to identify proteins modified by proteolysis in neurons undergoing excitotoxic cell death.

View Article and Find Full Text PDF

Escalating vector disease burdens pose significant global health risks, so innovative tools for targeting mosquitoes are critical. We engineered an antiviral strategy termed REAPER (vNA xpression ctivates oisonous ffector ibonuclease) that leverages the programmable RNA-targeting capabilities of CRISPR Cas13 and its potent collateral activity. Akin to a stealthy Trojan Horse hiding in stealth awaiting the presence of its enemy, REAPER remains concealed within the mosquito until an infectious blood meal is up taken.

View Article and Find Full Text PDF

Aedes aegypti mosquitoes carrying self-spreading, virus-blocking Wolbachia bacteria are being deployed to suppress dengue transmission. However, there are challenges in applying this technology in extreme environments. We introduced two Wolbachia strains into Ae.

View Article and Find Full Text PDF

With increasing urbanisation, the dengue disease burden is on the rise in India, especially in large cities such as Mumbai. Current dengue surveillance in Mumbai includes municipal corporation carrying out specific activities to reduce mosquito breeding sites and the use of insecticides to suppress the adult mosquito populations. Clinical cases remain either underreported or misreported due to the restriction to government clinics, missing the large private health care sector.

View Article and Find Full Text PDF

Vector behavioural traits, such as fitness, host-seeking, and host-feeding, are key determinants of vectorial capacity, pathogen transmission, and epidemiology of the vector-borne disease. Several studies have shown that infection with pathogens can alter these behavioural traits of the arthropod vector. Here, we review relevant publications to assess how pathogens modulate the behaviour of mosquitoes and ticks, major vectors for human diseases.

View Article and Find Full Text PDF

Marek's disease (MD), caused by MD herpesvirus (MDV), is an economically important disease in chickens. The efficacy of the existing vaccines against evolving virulent stains may become limited and necessitates the development of novel antiviral strategies to protect poultry from MDV strains with increased virulence. The CRISPR/Cas9 system has emerged as a powerful genome editing tool providing an opportunity to develop antiviral strategies for the control of MDV infection.

View Article and Find Full Text PDF

The continuing emergence of arbovirus disease outbreaks around the world, despite the use of vector control strategies, warrants the development of new strategies to reduce arbovirus transmission. Superinfection exclusion, a phenomenon whereby a primary virus infection prevents the replication of a second closely related virus, has potential to control arbovirus disease emergence and outbreaks. This phenomenon has been observed for many years in plants, insects and mammalian cells.

View Article and Find Full Text PDF

With dengue virus (DENV) becoming endemic in tropical and subtropical regions worldwide, there is a pressing global demand for effective strategies to control the mosquitoes that spread this disease. Recent advances in genetic engineering technologies have made it possible to create mosquitoes with reduced vector competence, limiting their ability to acquire and transmit pathogens. Here we describe the development of Aedes aegypti mosquitoes synthetically engineered to impede vector competence to DENV.

View Article and Find Full Text PDF

The aim of this article is to summarise the virology content presented at the 9th Lorne Infection and Immunity Conference, Australia, in February 2019. The broad program included virology as a key theme, and the commentary herein highlights several key virology presentations at the meeting.

View Article and Find Full Text PDF
Article Synopsis
  • * RNA sequencing revealed 159 genes that were expressed differently in infected mosquitoes compared to uninfected ones, and the role of Bruton's tyrosine kinase was further examined for its potential function in viral response.
  • * Although knocking down Bruton's tyrosine kinase did not alter viral replication, it did increase cell death in mosquitoes, hinting at a shared mechanism between mosquito and mammal immune responses to CHIKV.
View Article and Find Full Text PDF