Patients with type 2 and type 1 diabetes (T2D and T1D) exhibit sex-specific differences in insulin secretion, the mechanisms of which are unknown. We examined sex differences in human pancreatic islets from 52 donors with and without T2D combining single cell RNA-sequencing (scRNA-seq) and single nucleus ATAC-sequencing (snATAC-seq) with assays probing hormone secretion and bioenergetics. In non-diabetic (ND) donors, sex differences in islet cell chromatin accessibility and gene expression predominantly involved sex chromosomes.
View Article and Find Full Text PDFType 2 and type 1 diabetes (T2D, T1D) exhibit sex differences in insulin secretion, the mechanisms of which are unknown. We examined sex differences in human pancreatic islets from 52 donors with and without T2D combining single cell RNA-seq (scRNA-seq), single nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), hormone secretion, and bioenergetics. In nondiabetic (ND) donors, sex differences in islet cells gene accessibility and expression predominantly involved sex chromosomes.
View Article and Find Full Text PDFBiological sex affects the pathogenesis of type 2 and type 1 diabetes (T2D, T1D) including the development of β cell failure observed more often in males. The mechanisms that drive sex differences in β cell failure is unknown. Studying sex differences in islet regulation and function represent a unique avenue to understand the sex-specific heterogeneity in β cell failure in diabetes.
View Article and Find Full Text PDFIncreased body weight (BW) induces inappropriate renin-angiotensin system (RAS) activation. The activation of the intrarenal RAS is associated with increased urinary angiotensinogen (uAGT), blood pressure (BP), and kidney damage. Here, we examined uAGT excretion levels in young non-diabetic human subjects with overweight (OW) and non-diabetic mice with high-fat diet (HFD)-induced OW.
View Article and Find Full Text PDFRisk factors contributing to dementia are multifactorial. Accumulating evidence suggests a role for pathogens as risk factors, but data is largely correlative with few causal relationships. Here, we demonstrate that intermittent murine cytomegalovirus (MCMV) infection of mice, alters blood brain barrier (BBB) permeability and metabolic pathways.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
April 2024
Hypoglycemia increases the risk related to stroke and neurodegenerative diseases, however, the underlying mechanisms are unclear. For the first time, we studied the effect of a single episode (acute) of severe (ASH) and mild (AMH) hypoglycemia on mouse brain microvascular proteome. After four-hour fasting, insulin was administered (i.
View Article and Find Full Text PDFAcute hemorrhage commonly leads to coagulopathy and organ dysfunction or failure. Recent evidence suggests that damage to the endothelial glycocalyx contributes to these adverse outcomes. The physiological events mediating acute glycocalyx shedding are undefined, however.
View Article and Find Full Text PDFMale mice lacking the androgen receptor (AR) in pancreatic β cells exhibit blunted glucose-stimulated insulin secretion (GSIS), leading to hyperglycemia. Testosterone activates an extranuclear AR in β cells to amplify glucagon-like peptide-1 (GLP-1) insulinotropic action. Here, we examined the architecture of AR targets that regulate GLP-1 insulinotropic action in male β cells.
View Article and Find Full Text PDFPlasma soluble prorenin receptor (sPRR) displays sexual dimorphism and is higher in women with type 2 diabetes mellitus (T2DM). However, the contribution of plasma sPRR to the development of vascular complications in T2DM remains unclear. We investigated if plasma sPRR contributes to sex differences in the activation of the systemic renin-angiotensin-aldosterone system (RAAS) and vascular damage in a model of high-fat diet (HFD)-induced T2DM.
View Article and Find Full Text PDFGenes Brain Behav
April 2023
Stress is associated with contextual memory deficits, which may mediate avoidance of trauma-associated contexts in posttraumatic stress disorder. These deficits may emerge from impaired pattern separation, the independent representation of similar experiences by the dentate gyrus-Cornu Ammonis 3 (DG-CA3) circuit of the dorsal hippocampus, which allows for appropriate behavioral responses to specific environmental stimuli. Neurogenesis in the DG is controlled by mitochondrial reactive oxygen species (ROS) production, and may contribute to pattern separation.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2023
Mechanical impact-induced primary injury after traumatic brain injury (TBI) leads to acute microglial pro-inflammatory activation and consequently mediates neurodegeneration, which is a major secondary brain injury mechanism. However, the detailed pathologic cascades have not been fully elucidated, partially because of the pathologic complexity in animal TBI models. Although there are several TBI models, none of them closely mimic post-TBI microglial activation.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2022
Mitochondrial numbers and dynamics in brain blood vessels differ between young male and female rats under physiological conditions, but how these differences are affected by stroke is unclear. In males, we found that mitochondrial numbers, possibly due to mitochondrial fission, in large middle cerebral arteries (MCAs) increased following transient middle cerebral artery occlusion (tMCAO). However, mitochondrial effects of stroke on MCAs of female rats have not been studied.
View Article and Find Full Text PDFDiabetes increases the risk of Alzheimer's disease (AD). We investigated the impact of glucose concentrations on the β-amyloid (Aβ)-induced alteration of mitochondrial/cellular energetics in primary human brain microvascular endothelial cells (HBMECs). HBMECs were grown and passaged in media containing 15 mmol/l glucose (normal) based on which the glucose levels in the media were designated as high (25 mmol/L) or low (5 mmol/L).
View Article and Find Full Text PDFIn the pathophysiology of hemorrhagic stroke, the perturbation of the neurovascular unit (NVU), a functional group of the microvascular and brain intrinsic cellular components, is implicated in the progression of secondary injury and partially informs the ultimate patient outcome. Given the broad NVU functions in maintaining healthy brain homeostasis through its maintenance of nutrients and energy substrates, partitioning central and peripheral immune components, and expulsion of protein and metabolic waste, intracerebral hemorrhage (ICH)-induced dysregulation of the NVU directly contributes to numerous destructive processes in the post-stroke sequelae. In ICH, the damaged NVU precipitates the emergence and evolution of perihematomal edema as well as the breakdown of the blood-brain barrier structural coherence and function, which are critical facets during secondary ICH injury.
View Article and Find Full Text PDFAlterations of mitochondrial and glycolytic energy pathways related to aging could contribute to cerebrovascular dysfunction. We studied the impact of aging on energetics of primary human brain microvascular endothelial cells (HBMECs) by comparing the young (passages 7-9), pre-senescent (passages 13-15), and senescent (passages 20-21) cells. Pre-senescent HBMECs displayed decreased telomere length and undetectable telomerase activity although markers of senescence were unaffected.
View Article and Find Full Text PDFMitochondrial and glycolytic energy pathways regulate the vascular functions. Aging impairs the cerebrovascular function and increases the risk of stroke and cognitive dysfunction. The goal of our study is to characterize the impact of aging on brain microvascular energetics.
View Article and Find Full Text PDFDifferentially expressed (DE) proteins in the cortical microvessels (MVs) of young, middle-aged, and old male and female mice were evaluated using discovery-based proteomics analysis (> 4,200 quantified proteins/group). Most DE proteins (> 90%) showed no significant differences between the sexes; however, some significant DE proteins showing sexual differences in MVs decreased from young (8.3%), to middle-aged (3.
View Article and Find Full Text PDFEstrogen exerts protective effects on the cardiovascular system via three known estrogen receptors: alpha (ERα), beta (ERß), and the G protein-coupled estrogen receptor (GPER). Our laboratory has previously showed the importance of GPER in the beneficial cardiovascular effects of estrogen. Since clinical studies indicate that the protective effects of exogenous estrogen on cardiovascular function are attenuated or reversed 10 years post-menopause, the hypothesis was that GPER expression may be reduced during aging.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2021
Peroxynitrite (PN), generated from the reaction of nitric oxide (NO) and superoxide, is implicated in the pathogenesis of ischemic and neurodegenerative brain injuries. Mitochondria produce NO from mitochondrial NO synthases and superoxide by the electron transport chain. Our objective was to detect the generation of PN of mitochondrial origin and characterize its effects on mitochondrial respiratory function.
View Article and Find Full Text PDFIntravenous administration of tissue-type plasminogen activator (IV tPA) therapy has long been considered a mainstay in ischemic stroke management. However, patients respond to IV tPA therapy unequally with some subsets of patients having worsened outcomes after treatment. In particular, diabetes mellitus (DM) is recognized as a clinically important vascular comorbidity that leads to lower recanalization rates and increased risks of hemorrhagic transformation (HT).
View Article and Find Full Text PDFRenal macrophages (RMs) participate in tissue homeostasis, inflammation and repair. RMs consist of embryo-derived (EMRMs) and bone marrow-derived RMs (BMRMs), but the fate, dynamics, replenishment, functions and metabolic states of these two RM populations remain unclear. Here we investigate and characterize RMs at different ages by conditionally labeling and ablating RMs populations in several transgenic lines.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
June 2020
Mitochondria are important regulators of cerebral vascular function in health and disease, but progress in understanding their roles has been hindered by methodological limitations. We report the first in vivo imaging of mitochondria specific to the cerebral endothelium in real time in the same mouse for extended periods. Mice expressing Dendra2 fluorescent protein in mitochondria (mito-Dendra2) in the cerebral vascular endothelium were generated by breeding PhAM-floxed and Tie2-Cre mice.
View Article and Find Full Text PDFSex differences in mitochondrial numbers and function are present in large cerebral arteries, but it is unclear whether these differences extend to the microcirculation. We performed an assessment of mitochondria-related proteins in cerebral microvessels (MVs) isolated from young, male and female, Sprague-Dawley rats. MVs composed of arterioles, capillaries, and venules were isolated from the cerebrum and used to perform a 3 versus 3 quantitative, multiplexed proteomics experiment utilizing tandem mass tags (TMT), coupled with liquid chromatography/mass spectrometry (LC/MS).
View Article and Find Full Text PDF