Coupling piezo-active and triboelectric materials has recently emerged as an effective technique for developing high-performance hybrid nanogenerators (HNGs). This is the first paper to report the fabrication of piezo-active poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HFP)/MXene-based hybrid composite fibers through conventional electrospinning. Here, the effect of MXene content (1-5%) on the surface potential and electrical performance of the as-synthesized composites is investigated and optimized.
View Article and Find Full Text PDFSince the last decade, hyperbranched polymers (HBPs) have gained wider theoretical interest and practical applications in sensor technology due to their ease of synthesis, highly branched structure but dimensions within nanoscale, a larger number of modified terminal groups and lowering of viscosity in polymer blends even at higher HBP concentrations. Many researchers have reported the synthesis of HBPs using different organic-based core-shell moieties. Interestingly, silanes, as organic-inorganic hybrid modifiers of HBP, are of great interest as they resulted in a tremendous improvement in HBP properties like increasing thermal, mechanical and electrical properties compared to that of organic-only moieties.
View Article and Find Full Text PDFA flexible and portable triboelectric nanogenerator (TENG) based on electrospun polyvinylidene fluoride (PVDF) doped with copper oxide (CuO) nanoparticles (NPs, 2, 4, 6, 8, and 10 wt.-% w.r.
View Article and Find Full Text PDFFlexible pressure sensors have played an increasingly important role in the Internet of Things and human-machine interaction systems. For a sensor device to be commercially viable, it is essential to fabricate a sensor with higher sensitivity and lower power consumption. Polyvinylidene fluoride (PVDF)-based triboelectric nanogenerators (TENGs) prepared by electrospinning are widely used in self-powered electronics owing to their exceptional voltage generation performance and flexible nature.
View Article and Find Full Text PDFCucumis melo L. that belongs to Cucurbitaceae family ranks among one of the highest valued horticulture crops being cultivated across the globe. Besides its economical and medicinal importance, Cucumis melo L.
View Article and Find Full Text PDFBackground: Investigation of conformational changes in a protein is a prerequisite to understand its biological function. To explore these conformational changes in proteins we developed a strategy with the combination of molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy. The major goal of this work is to investigate how far computer simulations can meet the experiments.
View Article and Find Full Text PDFThe cytoskeletal adaptor protein vinculin plays an important role in the control of cell adhesion and migration, linking the actin cytoskeleton to adhesion receptor complexes in cell adhesion sites. The conformation of the vinculin tail dimer, which is crucial for protein function, was analyzed using site-directed spin labeling in electron paramagnetic resonance spectroscopy. Interspin distances for a set of six singly and four doubly spin-labeled mutants of the tail domain of vinculin were determined and used as constraints for modeling of the vinculin tail dimer.
View Article and Find Full Text PDFThe distance between the paramagnetic state of a native cofactor and a spin label is measured in the photosynthetic reaction centre from the bacterium Rhodobacter sphaeroides R26. A two-frequency pulsed electron paramagnetic resonance method [double-electron-electron spin resonance (DEER)] is used. A distance of 3.
View Article and Find Full Text PDF