Publications by authors named "Pranuthi Muggalla"

Disruption of the circadian rhythms is a frequent preclinical and clinical manifestation of Alzheimer's disease. Furthermore, it has been suggested that shift work is a risk factor for Alzheimer's disease. Previously, we have reported association of intolerance to shift work (job-related exhaustion in shift workers) with a variant rs12506228A, which is situated close to melatonin receptor type 1A gene (MTNR1A) and linked to MTNR1A brain expression levels.

View Article and Find Full Text PDF

Amyloid-β precursor protein (APP) plays a central role in pathogenesis of Alzheimer's disease. APP has a short half-life and undergoes complex proteolytic processing that is highly responsive to various stimuli such as changes in cellular lipid or energy homeostasis. Cellular trafficking of APP is controlled by its large protein interactome, including dozens of cytosolic adaptor proteins, and also by interactions with lipids.

View Article and Find Full Text PDF

Neuronal LRRTM3 (leucine-rich repeat transmembrane 3) protein has been reported to promote amyloid-β protein precursor (AβPP) processing and LRRTM3 is a candidate gene in late-onset Alzheimer's disease. To address the role of LRRTM3 in AβPP processing and amyloid-β (Aβ) production in vivo, we analyzed amyloidogenic processing of AβPP in the brains of LRRTM3-deficient mice and transgenic AβPP/PS1 mice with or without LRRTM3. We did not find differences between the genotypes in the levels of Aβ or AβPP C-terminal fragments indicating that LRRTM3 is not an essential regulator of Aβ production in adult mice.

View Article and Find Full Text PDF

The secreted protease proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to low-density lipid (LDL) receptor family members LDLR, very low density lipoprotein receptor (VLDLR) and apolipoprotein receptor 2 (ApoER2), and promotes their degradation in intracellular acidic compartments. In the liver, LDLR is a major controller of blood LDL levels, whereas VLDLR and ApoER2 in the brain mediate Reelin signaling, a critical pathway for proper development of the nervous system. Expression level of PCSK9 in the brain is highest in the cerebellum during perinatal development, but is also increased in the adult brain after ischemia.

View Article and Find Full Text PDF

Genetic studies have identified bone morphogenetic protein-15 (BMP15) as an essential regulator of female fertility in humans and in sheep. Oocyte-derived BMP15 is a noncovalently linked dimeric growth factor mediating its effects to ovarian somatic cells in a paracrine manner. Although receptor ectodomains capable of binding BMP15 have previously been reported, no cell surface receptor complex involved in BMP15 signaling has previously been characterized.

View Article and Find Full Text PDF

Growth differentiation factor-9 (GDF9) is an oocyte secreted paracrine factor essential for mammalian ovarian folliculogenesis. Like other members of the transforming growth factor-beta (TGFbeta) superfamily, GDF9 is synthesized as a prepropeptide which needs processing by furin-like proteases to result in an active mature protein. We have previously characterized a preparation of unpurified recombinant mouse GDF9 which is bioactive as produced by human embryonic kidney 293T (HEK-293T) cells.

View Article and Find Full Text PDF