Management of organic biomedical waste is a global quandary, and it is becoming difficult to confront day by day. Conversion of organic biomedical waste into fertilizer is of great concern. In the present research, organic biomedical waste samples (blood swabs, dressing swabs, and used cotton) were collected then after cow dung was collected in sterile container and immediately transported to the laboratory and screened for any gastrointestinal infection by using routine microscopy for intestinal parasitic infection, routine bacterial culture, and fecal occult blood for any intestinal bleeding.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
March 2019
Sustainable organic biomedical waste management is a difficult challenge as this has become one of the serious hazardous wastes. Improper disposal of organic biomedical waste can lead to direct and indirect transmission of diseases. In the present research, the organic biomedical waste samples (32 g blood swabs, 12 g dressing swabs, and 6 g used cotton) were treated with Azadirachta indica ("Neem") and Nicotiana tabacum ("Tobacco") extracts at various concentrations and kept for 96-h degradation, followed by evaluation of physicochemical parameters.
View Article and Find Full Text PDFThe present investigation deals with facile polyol mediated synthesis and characterization of ZnO nanoparticles and their antimicrobial activities against pathogenic microorganisms. The synthesis process was carried out by refluxing zinc acetate precursor in diethylene glycol(DEG) and triethylene glycol(TEG) in the presence and in the absence of sodium acetate for 2 h and 3 h. All synthesized ZnO nanoparticles were characterized by X-ray diffraction (XRD), UV visible spectroscopy (UV), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy(FESEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) technique.
View Article and Find Full Text PDF