Unlabelled: Intrinsic resistance to targeted therapeutics in PTEN-deficient glioblastoma (GBM) is mediated by redundant signaling networks that sustain critical metabolic functions. Here, we demonstrate that coordinated inhibition of the ribosomal protein S6 kinase 1 (S6K1) and the receptor tyrosine kinase AXL using LY-2584702 and BMS-777607 can overcome network redundancy to reduce GBM tumor growth. This combination of S6K1 and AXL inhibition suppressed glucose flux to pyrimidine biosynthesis.
View Article and Find Full Text PDFAlthough mTORC1 negatively regulates autophagy in cultured cells, how autophagy impacts mTORC1 signaling, in particular in vivo, is less clear. Here we show that autophagy supports mTORC1 hyperactivation in NSCs lacking Tsc1, thereby promoting defects in NSC maintenance, differentiation, tumourigenesis, and the formation of the neurodevelopmental lesion of Tuberous Sclerosis Complex (TSC). Analysing mice that lack Tsc1 and the essential autophagy gene Fip200 in NSCs we find that TSC-deficient cells require autophagy to maintain mTORC1 hyperactivation under energy stress conditions, likely to provide lipids via lipophagy to serve as an alternative energy source for OXPHOS.
View Article and Find Full Text PDFBackground: Histone deacetylase inhibitors (HDACIs) have got immense importance as promising drugs for cancer treatment as these inhibitors regulate cellular differentiation, gene expression, cell cycle arrest and apoptosis. The current study investigates the effect of the hybrid-polar HDACI m-carboxycinnamic acid bishydroxyamide (CBHA) on the growth of human pancreatic adenocarcinoma cells, using the cell line MIA PaCa- 2 as an in vitro model.
Methods: Following CBHA treatment of the MIA PaCa-2 cells, we characterized the effect of CBHA by in vitro cytotoxicity evaluation, clonogenic assay, cell cycle analysis, immunoblotting for soluble and insoluble fractions of tubulin, immunofluorescence and caspase-3 assay.
Genetic S6K1 inactivation can induce apoptosis in PTEN-deficient cells. We analyzed the therapeutic potential of S6K1 inhibitors in PTEN-deficient T cell leukemia and glioblastoma. Results revealed that the S6K1 inhibitor LY-2779964 was relatively ineffective as a single agent, while S6K1-targeting AD80 induced cytotoxicity selectively in PTEN-deficient cells.
View Article and Find Full Text PDFBackground: Prohibitin (PHB) is overtly conserved evolutionarily and ubiquitously expressed protein with pleiotropic functions in diverse cellular compartments. However, regulation and function of these proteins in different cells, tissues and in various diseases is different as evidenced by expression of these proteins which is found to be reduced in heart diseases, kidney diseases, lung disease, Crohn's disease and ulcerative colitis but this protein is highly expressed in diverse cancers. The mechanism by which this protein acts at the molecular level in different subcellular localizations or in different cells or tissues in different conditions (diseases or normal) has remained poorly understood.
View Article and Find Full Text PDFGlioma amplified sequence 41(GAS41) is a potent transcription factor that play a crucial role in cell proliferation and survival. In glioblastoma, the expression of GAS41 at both transcriptional and post transcriptional level needs to be tightly maintained in response to cellular signals. Micro RNAs (miRNA) are small non coding RNA that act as important regulators for modulating the expression of various target genes.
View Article and Find Full Text PDFAims: Breast cancer is highly resistant to chemotherapeutic approach and hence, alternative strategies have been developed to fight against this heterogeneous group of disease. In particular, many studies have demonstrated about various drugs for the treatment of breast cancer. In our study, we assessed the anti-angiogenenic activities of Bisindole-PBD (5b) in MCF-7 and MDA-MB-231 cell lines.
View Article and Find Full Text PDFCancer Biol Ther
September 2016
In a previous study we reported the role of potent bisindole-PBD conjugate as an inclusion in the arsenal of breast cancer therapeutics. In breast cancer cell proliferation, PI3K/AKT/mTOR pathway plays a crucial role by prosurvival mechanism that inhibits programmed cell death. Here, 2 breast cancer cells lines, MCF-7 and MDA-MB-231 were treated with Vorinostat (suberoylanilide hydroxamic acid / SAHA) and bisindole-PBD (5b).
View Article and Find Full Text PDFDNA damage response (DDR) that includes cell cycle check points, DNA repair, apoptosis, and senescence is intimately linked with cancer. It shields an organism against cancer development when genomic integrity fails. DNA repair pathways protect the cells from tumor progression caused as a result of DNA damage induced by irradiation or due to chemotherapeutic treatment.
View Article and Find Full Text PDFA series of new conjugates of quinazolino linked 4β-amidopodophyllotoxins 10aa-af and 10ba-bf were synthesized and evaluated for their anticancer activity against human pancreatic carcinoma (Panc-1) as well as breast cancer cell lines such as MCF-7 and MDA-MB-231 by employing MTT assay. Among these conjugates, some of them like 10bc, 10bd, 10be and 10bf exhibited high potency of cytotoxicity. Flow cytometric analysis showed that these conjugates arrested the cell cycle in the G2/M phase and caused the increase in expression of p53 and cyclin B1 protein with concomitant decrease in Cdk1 thereby suggesting the inhibitory action of these conjugates on mitosis.
View Article and Find Full Text PDFA series of new diaryl ether linked pyrrolobenzodiazepine (PBD) conjugates (4a-i, 5a-i and 6a-f) was synthesized and evaluated for their anticancer activity against a panel of 11 human cancer cell lines. These conjugates exhibited significant anticancer activity with GI50 values in the range of 0.1-3.
View Article and Find Full Text PDFA series of new 4β-acrylamidopodophyllotoxin derivatives (13a-o) were synthesized by coupling of substituted acrylic acids (10a-l and 11m-o) to the 4β-aminopodophyllotoxin. The synthesized derivatives 13a-o were evaluated for their cytotoxicity against five human cancer cell lines (breast, oral, colon, lung and ovarian). These podophyllotoxin conjugates have shown promising activity with GI₅₀ values ranging from <0.
View Article and Find Full Text PDFBackground: Breast cancer is one of the most prevalent cancers in the world and more than one million women are diagnosed leading to 410,000 deaths every year. In our previous studies new chalcone-imidazolone conjugates were prepared and evaluated for their anticancer activity in a panel of 53 human tumor cell lines and the lead compounds identified were 6 and 8. This prompted us to investigate the mechanism of apoptotic event.
View Article and Find Full Text PDFA series of new estradiol linked pyrrolo[2,1-c][1,4]benzodiazepine (E(2)-PBD) conjugates (3a-f, 4a-f and 5a-f) with different linker architectures including a triazole moiety have been designed and synthesized. All the 18 compounds have been evaluated for their anticancer activity and it is observed that some of the compounds particularly 4c-e and 5c,d exhibited significant anticancer activity. The detailed biological aspects relating to the cell cycle effects and tubulin depolymerization activity have been examined with a view to understand the mechanism of action of these conjugates.
View Article and Find Full Text PDFA series of 2,5-diaryloxadiazole linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates have been prepared and evaluated for their anticancer activity. These conjugates have shown promising activity with GI50 values ranging from <0.1 to 0.
View Article and Find Full Text PDFParkinson's disease (PD) is a complex multigenic neurodisorder frequently occurring in elderly persons. To investigate noncoding tiny microRNA mediated gene regulation, miRanda (version 1.0b) was used to predict human miRNA target sites on selected 29 genes related to PD.
View Article and Find Full Text PDF