Photoredox catalysis has demonstrated rapid evolution in the field of synthetic organic chemistry. On the other hand, the splendour of cascade reactions in providing complex molecular architectures renders them a cutting-edge research area. Therefore, the merging of photocatalysis with cascade synthesis brings out a synthetic paradigm with immense potential.
View Article and Find Full Text PDFC-H Functionalization is ubiquitously considered as a powerful, efficient and handy tool for installing various functional groups in complex organic heterocycles in an easier and step-economic way. Similarly, indazole is endowed as a potent heterocycle and is eminent for its profound impact in biological, medicinal and industrial chemistry. In this scenario, C-H functionalization at the selective ortho position of 2-arylindazole in assistance of a metal catalyst is also becoming an appealing approach in synthetic organic chemistry.
View Article and Find Full Text PDFChiral organoboronates have emerged as a key intermediate in the development of pharmaceuticals and materials science. Therefore, several attempts have been made to design various synthetic methods to easily furnish these compounds during the past few decades. , asymmetric catalysis has been increasing rapidly as a viable, practical and beneficial strategy for their preparation.
View Article and Find Full Text PDFIndazole and pyrazole are renowned as a prodigious class of heterocycles having versatile uses in medicinal as well as industrial chemistry. Considering sustainable approaches, recently, photocatalysis has become an indispensable tool in organic chemistry due to its application for the activation of small molecules and the use of a clean energy source. In this review, we have highlighted the use of metal-based photocatalysts, organic photoredox catalysts, energy transfer photocatalysts and electron-donor-acceptor complexes in the functionalization of indazole and pyrazole.
View Article and Find Full Text PDFThe design and development of robust and efficient methods for installing one heterocycle with another is endowed as a ubiquitous and powerful synthetic strategy to access complex organic biheterocycles in recent days due to their pervasive applications in medicinal as well as material chemistry. This perspective presents an overview on the recent findings and developments for the synthesis of unsymmetrical biheteroarenes via dehydrogenative and decarboxylative couplings with literature coverage mainly extending from 2011 to 2021. For simplification of the readers, the article has been subcategorized based on the catalysts used in the reactions.
View Article and Find Full Text PDF