Publications by authors named "Pranitha S Pandit"

A novel gammaproteobacterial methanotroph; strain FWC3 was isolated from a tropical freshwater wetland sample collected near a beach in Western India. Strain FWC3 forms flesh pink/peach colored colonies, is non-motile, and the cells are present as diplococci, triads, tetracocci and aggregates. Strain FWC3 grows only on methane and methanol.

View Article and Find Full Text PDF

Members of the genus Methylobacter (Mtb) have been identified to be the most dominant methanotrophs in aquatic as well as terrestrial habitats. Methylobacter shows four species with validly published names and these are grouped in two clades based on phylogenetic and genomic comparisons. Mtb luteus and Mtb marinus (synonym: Mtb whittenburyi) belong to clade 1 Methylobacter.

View Article and Find Full Text PDF

Methane oxidation by methanotrophs is a very important environmental process in the mitigation of methane. Methylobacter (Mtb.) clade 2 members have been reported as dominant methane oxidisers in soils and sediments worldwide.

View Article and Find Full Text PDF

Candidatus Methylocucumis (Mcu.) oryzae, strain Sn10-6, a Gram-negative, pale pink pigmented, motile, large Type I methanotroph (3-6 µm × 1.5-2 µm) was recently isolated from an Indian rice field.

View Article and Find Full Text PDF

An elliptical to cucumber-shaped methanotroph with large cells was isolated from a rice rhizosphere in Western India. Strain Sn10-6 is one of the first methanotrophs to be isolated from Indian rice fields. Cells of Sn10-6 are Gram-negative, motile, large in size (3-6 µm × 1.

View Article and Find Full Text PDF

Rice fields are one of the important sources of anthropogenic methane. Methanotrophs can oxidize up to 30 % of the produced methane and thus have a pivotal environmental role in methane mitigation. India occupies the largest region under rice cultivation; however, most of the studies done on methanotrophic communities have focused on the Northern region.

View Article and Find Full Text PDF

Methanotrophs play a crucial role in filtering out methane from habitats, such as flooded rice fields. India has the largest area under rice cultivation in the world; however, to the best of our knowledge, methanotrophs have not been isolated and characterized from Indian rice fields. A cultivation strategy composing of a modified medium, longer incubation time, and serial dilutions in microtiter plates was used to cultivate methanotrophs from a rice rhizosphere sample from a flooded rice field in Western India.

View Article and Find Full Text PDF

Flooded rice fields are important sources of atmospheric methane. Aerobic methanotrophs living in the vicinity of rice roots oxidize methane and act as environmental filters. Here, we present genome characteristics of a gammaproteobacterial methanotroph, isolate Sn10-6, which was isolated from a rice rhizosphere of a flooded field in India.

View Article and Find Full Text PDF