Publications by authors named "Pranhita R Nimbalkar"

The conventional acetone-butanol-ethanol fermentation process suffers from several key hurdles viz. low solvent titer, insufficient yield and productivity, and solvent intolerance which largely affect butanol commercialization. To counteract these issues, the effect of stimulator, namely, folic acid was investigated in the present study to improve butanol titer.

View Article and Find Full Text PDF

Amino acids are vital precursors in many biochemical production pathways in addition to efficient nitrogen source which could enhance microbial growth yields. Therefore, in present study, the effect of amino acids from aliphatic and aromatic family was comprehensively evaluated in batch and integrated fed batch fermentation system. Clostridium acetobutylicum NRRL B-527 was able to utilize 54.

View Article and Find Full Text PDF

Metabolic engineering has the potential to steadily enhance product titers by inducing changes in metabolism. Especially, availability of cofactors plays a crucial role in improving efficacy of product conversion. Hence, the effect of certain trace elements was studied individually or in combinations, to enhance butanol flux during its biological production.

View Article and Find Full Text PDF

Efficient yet economic production of biofuel(s) using varied second-generation feedstock needs to be explored in the current scenario to cope up with global fuel demand. Hence, the present study was performed to reveal the use of cauliflower waste for acetone-butanol-ethanol (ABE) production using Clostridium acetobutylicum NRRL B 527. The proximate analysis of cauliflower waste demonstrated to comprise 17.

View Article and Find Full Text PDF

In the present study, press mud, a sugar industry waste, was explored for biobutanol production to strengthen agricultural economy. The fermentative production of biobutanol was investigated via series of steps, viz. characterization, drying, acid hydrolysis, detoxification, and fermentation.

View Article and Find Full Text PDF

Present investigation explores the use of pineapple peel, a food industry waste, for acetone-butanol-ethanol (ABE) production using Clostridium acetobutylicum B 527. Proximate analysis of pineapple peel shows that it contains 35% cellulose, 19% hemicellulose, and 16% lignin on dry basis. Drying experiments on pineapple peel waste were carried out in the temperature range of 60-120°C and experimental drying data was modeled using moisture diffusion control model to study its effect on ABE production.

View Article and Find Full Text PDF