β-Thalassaemia results from defects in β-globin chain production, leading to ineffective erythropoiesis and subsequently to severe anaemia and other complications. Apoptosis and autophagy are the main pathways that regulate the balance between cell survival and cell death in response to diverse cellular stresses. Herein, the death of erythroid lineage cells in the bone marrow from both β-thalassaemic mice and β-thalassaemia/HbE patients was investigated.
View Article and Find Full Text PDFThailand has a population of 66.2 million with 30.0-40.
View Article and Find Full Text PDFAnemia in β-thalassemia is associated with ineffective erythropoiesis and a shortened lifespan of erythroid cells. The limited differentiation of β-thalassemic erythroblasts has been documented, but the characteristic feature of terminal erythroid maturation and its physiological relevance are not clearly described in β-thalassemias. Here, the red blood cell and reticulocyte cellular characteristics were determined in patients with β-thalassemia/HbE in comparison to patients with iron deficiency anemia and healthy normal subjects.
View Article and Find Full Text PDFIntroduction: Several DNA-based approaches including a reverse dot-blot hybridization (RDB) have been established for detection of β-thalassemia genotypes to provide accurate genetic counseling and prenatal diagnosis for prevention and control of severe β-thalassemia. However, one of major concerns of these techniques is a risk of misdiagnosis due to a lack of DNA controls. Here, we constructed positive DNA controls for β-thalassemia genotyping in order to ensure that all steps in the analysis are performed properly.
View Article and Find Full Text PDFAlpha- and β-thalassemias and abnormal hemoglobin (Hb) are common in tropical countries. These abnormal globin genes in different combinations lead to many thalassemic diseases including three severe thalassemia diseases, i.e.
View Article and Find Full Text PDFIneffective erythropoiesis in β-thalassemia patients is caused by the premature death of red blood cell precursors due to excess α-globin chains. As a consequence, patients develop chronic anemia and hypoxia. Upregulation of miR-210, a hypoxia-induced miRNA, has been shown to regulate globin gene expression and erythroid differentiation in β-thalassemia/HbE erythroid progenitor cell culture.
View Article and Find Full Text PDFDetermining the magnitude of the thalassemia problem in a country is important for implementing a national prevention and control program. In order to acquire accurate thalassemia prevalence data, the gene frequency of α- and β-thalassemia (α- and β-thal) in different regions of a country should be determined. The molecular basis of thalassemia in Cambodia was performed by polymerase chain reaction (PCR)-based techniques in a community-based cross-sectional survey of 1631 unrelated individuals from three regions, Battambang, Preah Vihear and Phnom Penh.
View Article and Find Full Text PDFDecreased hemoglobinization of red cells resulting in hypochromia and microcytosis are the main features of thalassemia syndromes, and also of iron deficiency anemia (IDA). A simple and reliable method is required to distinguish the two conditions in the routine laboratories. In this study we analyzed the red cell and reticulocyte parameters from 414 samples of various types of thalassemias and IDA and discovered a variety of discriminating criteria including a discrimination index (DI) which should be useful for differential diagnosis.
View Article and Find Full Text PDFβ-Thalassemia/HbE disease is caused by a defective β-globin synthesis that leads to accumulation of excess unbound α-globins, and consequently oxidative stress, ineffective erythropoiesis and chronic anemia. Cell replication and oxidative stress are factors contributing to erosion of telomeres responsible for maintaining genomic stability and cell replication capability. In this study, the rate of telomere shortening in β-thalassemia/HbE patients was compared to the rate of telomere shortening in normal individuals.
View Article and Find Full Text PDFα(0)-Thalassemia occurs from a deletion of 2 linked α-globin genes and interaction of these defective genes leads to hemoglobin (Hb) Bart's hydrops fetalis, the most severe and lethal thalassemia syndrome. Identification of α(0)-thalassemia carriers is thus essential for the prevention and control program. An immunochromatographic (IC) strip test was developed for rapid screening of α(0)-thalassemia by testing for Hb Bart's in the blood samples using a specific monoclonal antibody against Hb Bart's.
View Article and Find Full Text PDFβ-thalassaemia is a hereditary anaemia resulting from the absence or reduction in β-globin chain production. Heart complications related to iron overload are the most serious cause of death in these patients. In this report cardiac pathology of β-thalassaemic mice was evaluated by light and electron microscopy.
View Article and Find Full Text PDFThalassemia is an inherited disorder of hemoglobin molecules that is characterized by an imbalance of α- and β-globin chain synthesis. Accumulation of unbound α-globin chains in erythroid cells is the major cause of pathology in β-thalassemia. Stimulation of γ-globin production can ameliorate disease severity as it combines with the α-globin to form fetal hemoglobin.
View Article and Find Full Text PDFIn Southeast Asia α-thalassaemia, β-thalassaemia, haemoglobin (Hb) E and Hb Constant Spring (CS) are prevalent. The abnormal genes in different combinations lead to over 60 different thalassaemia syndromes, making Southeast Asia the locality with the most complex thalassaemia genotypes. The four major thalassaemic diseases are Hb Bart's hydrops fetalis (homozygous α-thalassaemia 1), homozygous β-thalassaemia, β-thalassaemia/Hb E and Hb H diseases.
View Article and Find Full Text PDFThalassaemia is characterized by the reduced or absent production of globins in the haemoglobin molecule leading to imbalanced α-globin/non α-globin chains. HbE, the result of a G to A mutation in codon 26 of the HBB (β-globin) gene, activates a cryptic 5' splice site in codon 25 leading to a reduction of correctly spliced β(E) -globin (HBB:c.79G>A) mRNA and consequently β(+) -thalassaemia.
View Article and Find Full Text PDFIt has long been recognized that the presence of hemoglobin (Hb) Bart's in newborn's blood is associated with α-thalassemia. However, the automated high-performance liquid chromatography or low-performance liquid chromatography system is unable to quantify the amount of Hbs Bart's and H, which are eluted at the retention time close to 0 min. This study used automatic capillary electrophoresis (CE) system to diagnose various types of α-thalassemia in 587 cord blood samples, including 429 normal α-globin genotype, 120 cases of thalassemia with one α-globin gene defect, 34 cases with two α-globin genes defect, and four cases with three α-globin genes defect.
View Article and Find Full Text PDFHb Constant Spring [Hb CS, α142(H19)Term] and Hb Paksé [α142(H19)Term] occur from the mutation in the termination codon of the α2-globin gene, TAA>CAA (→Gln) and TAA>TAT (→Tyr), respectively. They are the most common nondeletional α-thalassemia (α-thal) variants causing Hb H disease in Southeast Asia. In this study, 587 cord blood samples were screened for the Hb CS and Hb Paksé mutations by a dot-blot hybridization technique using oligonucleotide probes specific for each mutation.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are negative regulators of gene expression that play an important role in hematopoiesis. Thalassemia, a defective globin synthesis leading to precipitate of excess unbound globins in red blood cell precursors, results in defective erythroid precursors and ineffective erythropoiesis. Expression pattern of miR-451, an erythroid-specific miRNA, was analyzed during differentiation of erythroid progenitors derived from normal and thalassemic peripheral blood CD34-positive cells, after 14 days of culture.
View Article and Find Full Text PDFThe purpose of the present study was to investigate the efficiency of embryo cryopreservation for four transgenic (TG) thalassaemic mouse strains, which is a key element of the ongoing gene banking efforts for these high-value animals. Heterozygous TG embryos were produced by breeding four lines of TG males to wild-type (WT) females (C57BL/6J). Intact two-cell embryos were cryopreserved by vitrification in straws using 35% ethylene glycol.
View Article and Find Full Text PDFBackground: Patients with Hb E/beta0 thalassemia display remarkable variability in disease severity. To identify genetic modifiers influencing disease severity, we conducted a two-stage genome scan in groups of 207 mild and 305 severe unrelated patients from Thailand with Hb E/beta0 thalassemia and normal alpha-globin genes.
Methods: First, we estimated and compared the allele frequencies of approximately 110,000 gene-based single nucleotide polymorphisms (SNPs) in pooled DNAs from different severity groups.
alpha-Thalassemia is an inherited hemoglobin disorder that results from defective synthesis of alpha-globin protein. Couples who both carry the alpha-thalassemia-1 gene are at risk of having a fetus with Hb Bart's hydrops fetalis. Rapid and accurate screening for individuals carrying the alpha-thalassemia-1 gene is the most effective strategy to prevent and control this severe form of thalassemia.
View Article and Find Full Text PDFb-Thalassemia/HbE disease is clinically variable. In searching for genetic factors modifying the disease severity, patients were selected based on their disease severities, and a genome-wide association study (GWAS) was performed. Genotyping was conducted with the Illumina Human 610-Quad BeadChips array using DNAs from 618 Thai b0-thalassemia/HbE patients who were classified as 383 severe and 235 mild phenotypes by a validated scoring system.
View Article and Find Full Text PDFBackground: beta-thalassemia occurs from the imbalanced globin chain synthesis due to the absence or inadequate beta-globin chain production. The excessive unbound alpha-globin chains precipitate in erythroid precursors and mature red blood cells leading to ineffective erythropoiesis and hemolysis.
Design And Methods: In vitro globin chain synthesis in reticulocytes from different types of thalassemic mice was performed.
Alpha-thalassaemia 1 genetic disorder occurs when there is a deletion of two linked alpha-globin genes. The interaction between these abnormal genes leads to the most severe type of thalassaemia disease, haemoglobin (Hb) Bart's hydrops fetalis. The identification of alpha-thalassaemia 1 carriers and genetic counselling are essential for the prevention and control of severe thalassaemia diseases.
View Article and Find Full Text PDFBasic diagnosis of hemoglobinopathies can be performed by analysis of erythrocyte indices as well as by the separation and quantification of the common hemoglobin (Hb) fractions Hb A(2), Hb S, Hb C, Hb D, Hb E, and Hb F. This study used an automatic capillary zone electrophoresis system to diagnose various types of hemoglobinopathies common in the Thai population. A total of 459 adults were recruited, which consisted of normal, various types of thalassemia carriers, and thalassemia patients with different genotypes.
View Article and Find Full Text PDFIncrease in fetal hemoglobin (Hb F) reduces globin chain imbalance in beta-thalassemia, consequently improving symptoms. QTL mapping together with previous genome-wide association study involving approximately 110,000 gene-based SNPs in mild and severe beta(0)-thalassemia/Hb E patients revealed SNPs in HBS1L significantly associated with severity and Hb F levels. Given its potential as binding site for transcription factor activator protein 4, HBS1L exon 1 C32T polymorphism was genotyped in 455 cases, providing for the first time evidence that C allele is associated with elevated Hb F level among beta(0)-thalassemia/Hb E patients with XmnI-(G)gamma-/-and XmnI-(G)gamma+/-polymorphisms.
View Article and Find Full Text PDF