Publications by authors named "Pranav C Khandelwal"

The femoral lobes of the orchid mantis give this fierce predator a flower-like appearance, but they also assist in gliding, showing that form can match function in more ways than one.

View Article and Find Full Text PDF

We live in a time of unprecedented scientific and human progress while being increasingly aware of its negative impacts on our planet's health. Aerial, terrestrial, and aquatic ecosystems have significantly declined putting us on course to a sixth mass extinction event. Nonetheless, the advances made in science, engineering, and technology have given us the opportunity to reverse some of our ecosystem damage and preserve them through conservation efforts around the world.

View Article and Find Full Text PDF

This review highlights the largely understudied behavior of gliding locomotion, which is exhibited by a diverse range of animals spanning vertebrates and invertebrates, in air and in water. The insights in the literature gained from January 2022 to December 2022 continue to challenge the previously held notion of gliding as a relatively simple form of locomotion. Using advances in field/lab data collection and computation, the highlighted studies cover gliding in animals including seabirds, flying lizards, flying snakes, geckos, dragonflies, damselflies, and dolphins.

View Article and Find Full Text PDF

Gliding animals change their body shape and posture while producing and modulating aerodynamic forces during flight. However, the combined effect of these different factors on aerodynamic force production, and ultimately the animal's gliding ability, remains uncertain. Here, we quantified the time-varying morphology and aerodynamics of complete, voluntary glides performed by a population of wild gliding lizards (Draco dussumieri) in a seven-camera motion capture arena constructed in their natural environment.

View Article and Find Full Text PDF

Gliding animals traverse cluttered aerial environments when performing ecologically relevant behaviours. However, it is unknown how gliders execute collision-free flight over varying distances to reach their intended target. We quantified complete glide trajectories amid obstacles in a naturally behaving population of gliding lizards inhabiting a rainforest reserve.

View Article and Find Full Text PDF

Conducting polymers have the combined advantages of metal conductivity with ease in processing and biocompatibility; making them extremely versatile for biosensor and tissue engineering applications. However, the inherent brittle property of conducting polymers limits their direct use in such applications which generally warrant soft and flexible material responses. Addition of fillers increases the material compliance, but is achieved at the cost of reduced electrical conductivity.

View Article and Find Full Text PDF