Publications by authors named "Pranab Kumar Mondal"

We investigate energy generation from salinity gradients inside a nanopore that is connected to reservoirs at both ends. We consider that the inner wall surfaces are grafted with a densely grafted polyelectrolyte layer (PEL). We developed the PEL grafting density-dependent correlation of dielectric permittivity, molecular diffusivity, and dynamic viscosity in this endeavor.

View Article and Find Full Text PDF

Blue energy generation in nanochannels based on salinity gradients is currently the most promising method in the area of nonconventional energy production. We used a semidiluted pure sodium carboxymethylcellulose (NaCMC)-KCl aqueous solution to study the characteristics of blue energy generation within a charged nanochannel. We solve the corresponding equations for ionic transport using a numerical technique based on the finite element method.

View Article and Find Full Text PDF

This study describes a numerical analysis on blue energy generation using a charged nanochannel with an integrated pH-sensitive polyelectrolyte layer (PEL), considering ion partitioning effects due to permittivity differences. The mathematical model for ionic and fluidic transport is solved using the finite element method, and the model validation is performed against existing theoretical and experimental results. The study investigates the influence of electrolyte concentration, permittivity ratio, and salt types (KCl, BeCl, AlCl) on the energy conversion process.

View Article and Find Full Text PDF

Fungal infections are very alarming nowadays and are common throughout the world. Severe fungal infections may lead to a significant risk of mortality and morbidity worldwide. Sustained delivery of antifungal agents is needed to mitigate this problem.

View Article and Find Full Text PDF

The initial emergence of the primary root from a germinating seed is a pivotal phase that influences a plant's survival. Abiotic factors such as pH, nutrient availability, and soil composition significantly affect root morphology and architecture. Of particular interest is the impact of nutrient flow on thigmomorphogenesis, a response to mechanical stimulation in early root growth, which remains largely unexplored.

View Article and Find Full Text PDF

For liquids used in biological applications, a smaller diffusion coefficient results in a longer mixing time. We discuss, in this endeavor, the promising potential of the AC electrothermal (ACET) effect toward modulating enhanced mixing of electrolytic liquids with higher convective strength in a novel wavy micromixer. To this end, we develop a modeling framework and numerically solve the pertinent transport equations in a three-dimensional (3D) configuration numerically.

View Article and Find Full Text PDF

By varying the pH values (pH) and types of salt solution, we investigate the salinity gradient-induced electrical and mechanical flow energies inside a reservoir-connected charged nanochannel with a grafted pH-sensitive polyelectrolyte layer (PEL) on the inner surfaces. The aqueous solutions of KCl, LiCl, BaCl, BeCl, AlCl, and Co(en)Cl salts are used as the working fluid in the current investigation. We examine the associated ionic transport and flow field, aiming to understand the underlying physics behind the generation of electrical and hydraulic energy through alterations in pH and types of salt solution.

View Article and Find Full Text PDF

We propose a novel technique, consistent with the induced charge electrokinetic (ICEK) phenomenon, for the efficient mixing of solute species at a microfluidic scale. A nonuniform bipolar electric double layer develops in the presence of an external electric field over a polarizable object is better known as the ICEK phenomenon. This ICEK is one of the most favorable techniques preferred for enhanced solute mixing in on-chip microfluidic platforms.

View Article and Find Full Text PDF

Pertaining to the mixing of the non-Newtonian Carreau fluid under electrokinetic actuation inside a plane microchannel, we propose a new design of micromixer that involves inserting a two-part cylinder bearing zeta potential of the same sign but different magnitude in the upstream and downstream directions. We numerically solve the transport equations to predict the underlying mixing characteristics. We demonstrate that a substantial momentum difference between the microchannel's plane wall and cylinder leads to the development of a vortex in the flow pathway, which in turn, enhances mixing substantially.

View Article and Find Full Text PDF

The salinity gradient energy or the 'blue energy' is one of the most promising inexpensive and abundant sources of clean energy, having immense capabilities to serve modern-day society. In this article, we overlay an extensive analysis of reverse electrodialysis (RED) for harvesting salinity gradient energy in a single conical nanochannel, grafted with a pH-tunable polyelectrolyte layer (PEL) on the inner surfaces. We primarily focus on the distinctiveness of the solution pH of the connecting reservoirs.

View Article and Find Full Text PDF

Root growth dynamics is an outcome of complex hormonal crosstalk. The primary root meristem size, for example, is determined by antagonizing actions of cytokinin and auxin. Here we show that RAV1, a member of the AP2/ERF family of transcription factors, mediates cytokinin signaling in roots to regulate meristem size.

View Article and Find Full Text PDF

In this article, we demonstrate the solution methodology of start-up electrokinetic flow of non-Newtonian fluids in a microfluidic channel having square cross-section using Spreadsheet analysis tool. In order to incorporate the rheology of the non-Newtonian fluids, we take into consideration the Ostwald-de Waele power law model. By making a comprehensive discussion on the implementation details of the discretized form of the transport equations in Spreadsheet analysis tool, and establishing the analytical solution for a special case of the start-up flow, we compare the results both during initial transience as well as in case of steady-state scenario.

View Article and Find Full Text PDF

Salinity energy generation (SEG) studies have only been done under isothermal conditions at ambient temperature. The production of salinity energy can be improved under non-isothermal conditions, albeit preserving the energy efficiency. In the current study, the effects of gradients of temperature and concentration on the salinity energy generation process were examined simultaneously.

View Article and Find Full Text PDF

We have investigated the role of viscoelectric effect on diffusioosmotic flow (DOF) through a nanochannel connected with two reservoirs. The transport equations governing the flow dynamics are solved numerically using the finite element technique. We have extensively analyzed the variation of induced field due to electric double layer (EDL) phenomenon, relative viscosity as modulated by the viscoelectric effect as well as reservoir's concentration difference, and their eventual impact on the underlying flow characteristics.

View Article and Find Full Text PDF

We develop a mathematical model to quantitatively describe the imbibition dynamics of an elastic non-Newtonian fluid in a conical (nonuniform cross section) microfluidic assay. We consider the simplified Phan-Thien-Tanner viscoelastic model to represent the rheology of the elastic non-Newtonian fluid. Our model accounts for the geometrical features of the fluidic assay, the key parameters affecting the rheological behavior of the fluid, and predicts the imbibition dynamics effectively.

View Article and Find Full Text PDF

We discuss, in this article, the solution method of the unsteady electroosmotic flow of Newtonian fluid in a square microfluidic channel cross-section in the framework of spreadsheet analysis. We demonstrate the implementation of the finite difference scheme, which is used for the discretization of the transport equations governing the flow dynamics of the present problem, in the spreadsheet tool. Also, we have shown the implementation details of different boundary conditions, which are typically used for the underlying electrohydrodynamics in a microfluidic channel, in the spreadsheet analysis tool.

View Article and Find Full Text PDF

A new autofocusing algorithm for digital holography is proposed based on the eigenvalues of the images reconstructed at different distances in the measurement volume. An image quality metric evaluated based on the distribution of its eigenvalues is compared in function of the reconstruction distance to identify the location of the focal plane. The proposed automatic focal plane detection algorithm is capable of working with amplitude objects, phase objects, and mixed type objects.

View Article and Find Full Text PDF

We propose a micromixer for obtaining better efficiency of vortex induced electroosmotic mixing of non-Newtonian bio-fluids at a relatively higher flow rate, which finds relevance in many biomedical and biological applications. To represent the rheology of non-Newtonian fluid, we consider the Carreau model in this study, while the applied electric field drives the constituent components in the micromixer. We show that the spatial variation of the applied field, triggered by the topological change of the bounding surfaces, upon interacting with the non-uniform surface potential gives rise to efficient mixing as realized by the formation of vortices in the proposed micromixer.

View Article and Find Full Text PDF

We study the spreading dynamics of a sphere-shaped elastic non-Newtonian liquid drop on a spherical substrate in the capillary-driven regime. We use the simplified Phan-Thien-Tanner model to represent the rheology of the elastic non-Newtonian drop. We consider the drop to be a crater on a flat substrate to calculate the viscous dissipation near the contact line.

View Article and Find Full Text PDF

We experimentally investigate the evaporation kinetics of a sessile ferrofluid droplet placed on a soft substrate in the presence of a time-dependent magnetic field. We use both bright field visualization techniques and μ-PIV analysis to gain qualitative as well as quantitative insights into the internal hydrodynamics of the droplet. The results show that the droplet evaporation rate is augmented significantly in the presence of a time-dependent magnetic field, attributed primarily to the enhanced internal flow advection.

View Article and Find Full Text PDF

We propose a novel and efficient mixing technique in a soft narrow-fluidic channel under the influence of electrical forcing. We show that a grafted polyelectrolyte layer (PEL) added as a patch to the channel wall modulates the electrical double layer (EDL) so that an applied electric field initiates a local electroosmotic flow (EOF) at the patched section. This EOF develops in the opposite direction to the primary pressure-driven flow.

View Article and Find Full Text PDF

Although over the past few years, graphene oxide (GO) has emerged as a promising membrane material, the applicability of layered GO membranes in water purification/seawater desalination is still a challenging issue because of the undesirable swelling of GO laminates in the aqueous environment. One of the ways to tune the interlayer spacing and to arrest the undesirable swelling of layered GO membranes in the aqueous environment is to intercalate the interlayer spacing of the GO laminates with cations. Although the cation intercalation imparts stabilization to GO laminates in the aqueous environment, their effect on the performance of the membrane is yet to be addressed in detail.

View Article and Find Full Text PDF

We investigate the Marangoni instability in a thin layer of viscoelastic fluid, confined between its deformable free surface and a substrate of low thermal conductivity. Following a theoretical analysis, we study the stability of the present system for the case when the fluid layer is subjected to heating from below. Here, we use the Maxwell model to depict the rheology of the viscoelastic fluid.

View Article and Find Full Text PDF

In this article, we discuss about the entropy generation minimization in a slip-modulated electrically actuated transport through an asymmetrically heated microchannel. While investigating the underlying thermo-hydrodynamics towards minimizing the irreversibility of the system under present consideration, we take the combined effects of Joule heating and the conjugate transfer of heat into account in this analysis. We primarily focus to tune the relevant thermo-physical as well as geometrical parameters towards minimizing the global irreversibility of the system.

View Article and Find Full Text PDF

In this article, we describe the electro-hydrodynamics of non-Newtonian fluid in narrow fluidic channel with solvent permeable and ion-penetrable polyelectrolyte layer (PEL) grafted on channel surface with an interaction of non-overlapping electric double layer (EDL) phenomenon. In this analysis, we integrate power-law model in the momentum equation for describing the non-Newtonian rheology. The complex interplay between the non-Newtonian rheology and interfacial electrochemistry in presence of PEL on the walls leads to non-intuitive variations in the underlying flow dynamics in the channels.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: