Epidermal growth factor receptor tyrosine kinase domain (EGFR-TKD) plays a pivotal role in cellular signaling, growth, and metabolism. The EGFR-TKD is highly expressed in cancer cells and was endorsed as a therapeutic target for cancer management to overcome metastasis, cell proliferation, and angiogenesis. The novel thiazolo-[2,3-b]quinazolinones series were strategically developed by microwave-assisted organic synthesis and multi dominos reactions aimed to identify the potent thiazolo-[2,3-b]quinazolinone inhibitor against EGFR-TKD.
View Article and Find Full Text PDFCoronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has compelled the scientific community to search for an effective drug that can cure or a vaccine that can prevent the disease. Alternatively, symptomatic treatment and traditional immunity boosters are prescribed. Holy () has been known as an ancient remedy for cure of common cold and respiratory ailment.
View Article and Find Full Text PDFUrease inhibitors are known to play a vital role in the field of medicine as well as agriculture. Special attention is attributed to the development of novel urease inhibitors with a view to treat the infection. Amongst a number of urease inhibitors, a large number of molecules fail and in clinical trials due to their hydrolytic instability and toxicity profile.
View Article and Find Full Text PDFBackground: Shikimate pathway is essential for tubercular bacillus but it is absent in mammals. Therefore, Shikimate kinase and other enzymes in the pathway are potential targets for the development of novel anti-tuberculosis drugs.
Objective: In the present study, Shikimate kinase is selected as the target for in silico screening of phytochemicals with an aim to discover a novel herbal drug against Mycobacterium tuberculosis (Mtb).
The physiology of loss of photosynthetic production of sugar and the consequent cellular sugar reprogramming during senescence of leaves experiencing environmental stress largely remains unclear. We have shown that leaf senescence in Arabidopsis thaliana causes a significant reduction in the rate of oxygen evolution and net photosynthetic rate (Pn). The decline in photosynthesis is further aggravated by dehydration.
View Article and Find Full Text PDFSignificant decline in oxygen evolution and DCPIP photoreduction and a marginal restoration of the later with DPC as an electron donor suggest the inactivation of reaction center of photosystem II. The declines in the height of thermoluminescence bands support the view and the damage of reaction center II could be central to the senescence process in Arabidopsis leaves. The enhancement in the number of reduced quinones, signifying a loss in redox homeostasis in the electron transport chain between photosystem II and I leads to the creation of an energy imbalance.
View Article and Find Full Text PDFThe redox active component of oxygenic photosynthetic reaction center II contains metal cluster Mn4-Ca, where two H2O are oxidized to O2 and four H+ ions are liberated. A binuclear Mn-Ca metal center binding one substrate H2O on each ion is proposed to be the minimal unit of the redox center. A model for the water oxidizing metal cluster is built with molecular modeling software (HyperChem 8.
View Article and Find Full Text PDFA link between senescence-induced decline in photosynthesis and activity of beta-glucosidase is examined in the leaves of Arabidopsis. The enzyme is purified and characterized. The molecular weight of the enzyme is 58 kDa.
View Article and Find Full Text PDF