Recent advances in experiment and theory suggest that superfluid ^{3}He under planar confinement may form a pair density wave (PDW) whereby superfluid and crystalline orders coexist. While a natural candidate for this phase is a unidirectional stripe phase predicted by Vorontsov and Sauls in 2007, recent nuclear magnetic resonance measurements of the superfluid order parameter rather suggest a two-dimensional PDW with noncollinear wave vectors, of possibly square or hexagonal symmetry. In this Letter, we present a general mechanism by which a PDW with the symmetry of a triangular lattice can be stabilized, based on a superfluid generalization of Landau's theory of the liquid-solid transition.
View Article and Find Full Text PDF