Publications by authors named "Pramod Patil"

Pyranopyrazoles are among the most distinguished, biologically potent, and exciting scaffolds in medicinal chemistry and drug discovery. Synthesis and design of pyranopyrazoles using functional modifications via multicomponent reactions (MCRs) are thoroughly found in synthetic protocols by forming new C-C, C-N, and C-O bonds. This review aims to focus on the biological importance of pyranopyrazoles as well as on a diverse synthetic approach for their synthesis using various catalytic systems such as acid-catalyzed, base-catalyzed, ionic liquids and green media-catalyzed, nano-particle-catalyzed, metal oxide-supported catalysts, and silica-supported catalysts.

View Article and Find Full Text PDF

Cation incorporation emerges as a promising approach for improving the performance of the kesterite CuZnSn(S,Se) (CZTSSe) device. Herein, we report indium (In) doping using the chemical bath deposition (CBD) technique to enhance the optoelectronic properties of CZTSSe thin-film solar cells (TFSCs). To incorporate a small amount of the In element into the CZTSSe absorber thin films, an ultrathin (<10 nm) layer of InS is deposited on soft-annealed precursor (Zn-Sn-Cu) thin films prior to the sulfo-selenization process.

View Article and Find Full Text PDF

Background: The Covid-19 pandemic seems to have an incessant out-turn on the people in every field in some or the other way. It has been reported that maximum number of deaths in the countries during this pandemic are caused due to a term called death anxiety or phobia. There are certain parameters such as anxiety, apprehension, depression which if influence a person can alter one's well-being.

View Article and Find Full Text PDF

The adsorption isotherms of azo dyes on a newly synthesized titania-doped silica (TdS) aerogel compared to silica aerogels and activated charcoal (AC) are systematically investigated. Monolithic TdS aerogels were synthesized by the cogelation process followed by supercritical drying of tetraethyl orthosilicate (TEOS) as a gel precursor and titanium(IV) isopropoxide (TTIP) as a metal complex precursor for co-polymerization in ethanol solvent. An acid-base catalyst was used for the hydrolysis and condensation of TEOS and TTIP.

View Article and Find Full Text PDF

In the present study, various statistical and machine learning (ML) techniques were used to understand how device fabrication parameters affect the performance of copper oxide-based resistive switching (RS) devices. In the present case, the data was collected from copper oxide RS devices-based research articles, published between 2008 to 2022. Initially, different patterns present in the data were analyzed by statistical techniques.

View Article and Find Full Text PDF

Oligomers of PDMS (M1), polyFast (M2), modified PVEE (M3 and M4), and two new molecules with cyclic cores (M5 and M6) were studied to understand their ability to thicken the sc-CO at 377 K and 55 MPa, without any cosolvent. It was observed that PDMS and polyFast behaved in the known ways. PDMS does not improve the viscosity of the system without a cosolvent and PolyFast enhances the viscosity by a large margin.

View Article and Find Full Text PDF

Transition metal phosphides are a new class of materials that have attracted enormous attention as a potential electrode for supercapacitors (SCs) compared to metal oxides/hydroxides and metal sulfides due to their strong redox-active behaviour, good electrical conductivity, layered structure, low cost, and high chemical and thermal stability. Recently, several efforts have been made to develop nickel phosphides (NiP) (NPs) for high-performance SCs. The electrochemical properties of NPs can be easily tuned by several innovative approaches, such as heteroatom doping, defect engineering, and developing a hollow architecture.

View Article and Find Full Text PDF

In today's digital era, many applications generate massive data streams that must be sequenced and processed immediately. Therefore, storing large amounts of data for analysis is impractical. Now, this infinite amount of evolving data confronts concept drifts in data stream classification.

View Article and Find Full Text PDF

Realizing photoactive and thermodynamically stable all-inorganic perovskite solar cells (PSCs) remains a challenging task within halide perovskite photovoltaic (PV) research. Here, a dual strategy for realizing efficient inorganic mixed halide perovskite PV devices based on a terbium-doped solar absorber, that is, CsPb Tb I Br, is reported, which undertakes a bulk and surface passivation treatment in the form of CsPb Tb I Br quantum dots, to maintain a photoactive γ-phase under ambient conditions and with significantly improved operational stability. Devices fabricated from these air-processed perovskite thin films exhibit an air-stable power conversion efficiency (PCE) that reaches 17.

View Article and Find Full Text PDF

The main objectives of the present work are to determine the clinical effect of niranthin on visceral or somatic inflammatory pain. The study was performed to determine the effects of niranthin on visceral or somatic inflammatory hypersensitivity of adult Swiss albino mice by using complete Freund's adjuvant (CFA) induced pain model. The effect of CFA injection was determined after 24 hours of injection by using an aesthesiometer such as Von Frey filaments to evaluate tactile acetone-evoked cooling and thermal sensitivity.

View Article and Find Full Text PDF

Aim: To evaluate pharmacokinetics, efficacy and safety of fixed-dose combination (FDC) of oral capecitabine + cyclophosphamide in metastatic breast cancer (MBC) patients progressing after anthracycline and/or taxane chemotherapy.

Methods: In this prospective, adaptive, phase-2/3, open-label study (CTRI/2014/12/005234), patients were randomized (1:1:1) to three FDC doses (doses/day: D1, capecitabine + cyclophosphamide 1400 mg + 60 mg; D2, 1800 mg + 80 mg; D3, 2200 mg + 100 mg) for 14 days, in 21-day cycles. In Part-I, multiple-dose pharmacokinetics and optimal dose(s) were evaluated with futility analysis.

View Article and Find Full Text PDF

Herein we have synthesized silver nanoparticles (Ag NPs) using liquid metabolic waste of Bos taurus (A-2 type) urine. Various bio-molecules present in cow urine, are effectively used to reduce silver (Ag) ions into silver nanoparticles in one step. This is bio-inspired electron transfer to Ag ion for the formation of base Ag metal and is fairly prompt and facile.

View Article and Find Full Text PDF

Objectives: We examine here the association of multidimensional functional fitness with type 2 diabetes mellitus (T2DM) as compared to anthropometric indices of obesity such as body mass index (BMI) and waist to hip ratio (WHR) in a sample of Indian population.

Research Design And Method: We analysed retrospective data of 663 volunteer participants (285 males and 378 females between age 28 and 84), from an exercise clinic in which every participant was required to undergo a health related physical fitness (HRPF) assessment consisting of 15 different tasks examining 8 different aspects of functional fitness.

Results: The odds of being diabetic in the highest quartile of BMI were not significantly higher than that in the lowest quartile in either of the sexes.

View Article and Find Full Text PDF

The present investigation deals with controlled synthesis of nanostructured NiCoO thin films directly on stainless steel substrates by facile and economical chemical bath deposition technique, without adding a surfactant or a binder. The consequences of different compositions of solvents on morphological and electrochemical properties have been studied systematically. We used different solvent composition as Double Distilled Water (DDW), DDW:Ethanol (1:1) and DDW: N, N dimethylformamide (1:1).

View Article and Find Full Text PDF

The COVID-19 pandemic brought to the forefront an unprecedented need for experts, as well as citizens, to visualize spatio-temporal disease surveillance data. Web application were quickly developed to fill this gap, including those built by JHU, WHO, and CDC, but all of these dashboards supported a particular niche view of the pandemic (ie, current status or specific regions). In this paper, we describe our work developing our own COVID-19 Surveillance Dashboard, available at https://nssac.

View Article and Find Full Text PDF

Unlabelled: The extracts and the compounds isolated from Phyllanthus amarus Schumm and Thonn (Family: Euphorbiaceae) have shown a wide spectrum of pharmacological activities including antiviral, antibacterial, antiplasmodial, antimalarial, antimicrobial, anticancer, antidiabetic, hypolipidemic, antioxidant, hepatoprotective, nephroprotective and diurectic properties.

Background: This investigation was aimed at exploring the anxiolytic potential of Phyllanthus amarus standardized extracts and predict probable role of marker phyto constitutents.

Objective And Methods: Three standardized extracts of Phyllanthus amarus plant viz.

View Article and Find Full Text PDF

Currently, the synthesis of nanostructured inorganic materials with tunable morphology is still a great challenge. In this study, almond skin extract was employed for the biogenic synthesis of selenium nanoparticles with tunable morphologies such as rods and brooms. The effects of various synthesis parameters on morphologies were investigated using UV-Visible spectroscopy and scanning electron microscopy (SEM) which indicated that selenium brooms (SeBrs) were best synthesized using almond skin extract and optimized conditions of SeO, ascorbic acid, pH, incubation temperature and time.

View Article and Find Full Text PDF

We report, a shape controlled novel synthesis of Indium oxide (InO) nanocapsule using biogenic reflux method. The InO samples were obtained through optimization of the concentration of sodium citrate, which played a significant role to tune the size of nanocapsules. All synthesized InO samples were characterized by using X-ray diffraction (XRD), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED).

View Article and Find Full Text PDF

Quantum dot solar cells (QDSCs) are attractive technology for commercialization, owing to various advantages, such as cost effectiveness, and require relatively simple device fabrication processes. The properties of semiconductor quantum dots (QDs), such as band gap energy, optical absorption, and carrier transport, can be effectively tuned by modulating their size and shape. Two types of architectures of QDSCs have been developed: 1) photoelectric cells (PECs) fabricated from QDs sensitized on nanostructured TiO , and 2) photovoltaic cells fabricated from a Schottky junction and heterojunction.

View Article and Find Full Text PDF

We report a facile synthesis of Ru-loaded WO3 marigold structures through a hydrothermal route and their bidirectional applications as enhanced H2S gas sensors and efficient sunlight-driven photocatalysts. The developed hierarchical marigold structures provide effective gas diffusion channels via a well-aligned mesoporous framework, resulting in remarkable enhancement in the sensing response to H2S. The temperature and gas concentration dependence on the sensing properties reveals that Ru loading not only improves the sensing response, but also lowers the operating temperature of the sensor from 275 to 200 °C.

View Article and Find Full Text PDF

The process of selecting an effective surfactant for wettability alteration is dependent on a number of factors, including mineral type, temperature, salinity, and nature of adsorbed oil and ultimately how the molecular structure of the surfactant interacts with all of these. Here, we present an experimental study of the effectiveness of nonionic surfactants with different hydrophobic groups and different lengths of hydrophilic ethylene oxide oligomers. The surfactants selected alter the wettability of the rock primarily by acting on the water-rock and oil-rock interfaces.

View Article and Find Full Text PDF

Symmetric supercapacitor is advanced over simple supercapacitor device due to their stability over a large potential window and high energy density. Graphene is a desired candidate for supercapacitor application since it has a high surface area, good electronic conductivity and high electro chemical stability. There is a pragmatic use of ionic liquid electrolyte for supercapacitor due to its stability over a large potential window, good ionic conductivity and eco-friendly nature.

View Article and Find Full Text PDF

Dye-sensitized solar cells (DSSCs) have aroused great interest and been regarded as a potential renewable energy resource among the third-generation solar cell technologies to fulfill the 21 century global energy demand. DSSCs have notable advantages such as low cost, easy fabrication process and being eco-friendly in nature. The progress of DSSCs over the last 20 years has been nearly constant due to some limitations, like poor long-term stability, narrow absorption spectrum, charge carrier transportation and collection losses and poor charge transfer mechanism for regeneration of dye molecules.

View Article and Find Full Text PDF

A facile improved successive ionic-layer adsorption and reaction (SILAR) sequence is described for the fabrication of CuZnSn(S,Se) (CZTSSe) thin-film solar cells (TFSCs) via the selenization of a precursor film. The precursor films were fabricated using a modified SILAR sequence to overcome compositional inhomogeneity due to different adsorptivities of the cations (Cu, Sn, and Zn) in a single cationic bath. Rapid thermal annealing of the precursor films under S and Se vapor atmospheres led to the formation of carbon-free CuZnSnS (CZTS) and CZTSSe absorber layers, respectively, with single large-grained layers.

View Article and Find Full Text PDF

The sulfur ion concentration dependent morphological evolution and its subsequent effect on photo-electrochemical properties of chemically synthesized CdS thin films have been systematically investigated. The plausible growth mechanism for the morphological evolution of CdS thin films due to a change in sulfur ion concentration has been proposed. Scanning electron micrographs (SEMs) reveal that the morphology of CdS thin films has been changed from spherical grains to vertically aligned nanoflakes by systematic control of sulfur ion concentration.

View Article and Find Full Text PDF