Publications by authors named "Pramod P Mehta"

MicroRNAs (miRNAs) have been implicated in the orchestration of diverse cellular processes including differentiation, proliferation, and apoptosis and are believed to play pivotal roles as oncogenes and tumor suppressors. miR-122, a liver specific miRNA, is significantly down-regulated in most hepatocellular carcinomas (HCCs) but its role in tumorigenesis remains poorly understood. Here we identify AKT3 as a novel and direct target of miR-122.

View Article and Find Full Text PDF

Purpose: Constitutive activation of phosphoinositide 3-kinase (PI3K) occurs frequently in many human tumors via either gene mutation in the p110α catalytic subunit of PI3K or functional loss of tumor suppressor PTEN. Patients with small-cell lung cancer (SCLC) have very poor prognosis and survival rates such that an effective targeted therapy is in strong demand for these patients. In this study, we characterized the highly selective oral PI3K inhibitor, PF-4989216, in preclinical SCLC models to investigate whether targeting the PI3K pathway is an effective targeted therapy option for SCLCs that harbor a PIK3CA mutation.

View Article and Find Full Text PDF

Patients with triple-negative breast cancers (TNBCs) typically have a poor prognosis. TNBCs are characterized by their resistance to apoptosis, aggressive cellular proliferation, migration and invasion, and currently lack molecular markers and effective targeted therapy. Recently, miR-221/miR-222 have been shown to regulate ERα expression and ERα-mediated signaling in luminal breast cancer cells, and also to promote EMT in TNBCs.

View Article and Find Full Text PDF

Deregulation of the phosphoinositide 3-kinase (PI3K) signaling pathway such as by PTEN loss or PIK3CA mutation occurs frequently in human cancer and contributes to resistance to antitumor therapies. Inhibition of key signaling proteins in the pathway therefore represents a valuable targeting strategy for diverse cancers. PF-04691502 is an ATP-competitive PI3K/mTOR dual inhibitor, which potently inhibited recombinant class I PI3K and mTOR in biochemical assays and suppressed transformation of avian fibroblasts mediated by wild-type PI3K γ, δ, or mutant PI3Kα.

View Article and Find Full Text PDF

Purpose: Triple-negative breast cancer (TNBC) patients have poor prognoses and survival outcomes such that the development of new targeted therapies is in strong demand. Mechanisms associated with high proliferation and aggressive tumor progression, such as PI3K/PTEN aberration, epidermal growth factor receptor (EGFR) overexpression, and cell-cycle upregulation, play important roles in TNBC. The molecular chaperone Hsp90 is required for the conformational maturation and stability of a variety of proteins in multiple pathways, such as EGFR, AKT, Raf, cdk4, etc.

View Article and Find Full Text PDF

PF04942847 [2-amino-4-{4-chloro-2-[2-(4-fluoro-1H-pyrazol-1-yl)ethoxy]-6-methylphenyl}-N-(2,2-difluoropropyl)-5,7-dihydro-6H-pyrrolo[3,4-d]pyrimidine-6-carboxamide] was identified as an orally available, ATP-competitive, small-molecule inhibitor of heat shock protein 90 (HSP90). The objectives of the present study were: 1) to characterize the pharmacokinetic-pharmacodynamic relationship of the plasma concentrations of PF04942847 to the inhibition of HSP90-dependent protein kinase, AKT, as a biomarker and 2) to characterize the relationship of AKT degradation to tumor growth inhibition as a pharmacological response (antitumor efficacy). Athymic mice implanted with MDA-MB-231 human breast cancer cells were treated with PF04942847 once daily at doses selected to encompass ED(50) values.

View Article and Find Full Text PDF

A series of novel and potent small molecule Hsp90 inhibitors was optimized using X-ray crystal structures. These compounds bind in a deep pocket of the Hsp90 enzyme that is partially comprised by residues Asn51 and Ser52. Displacement of several water molecules observed crystallographically in this pocket using rule-based strategies led to significant improvements in inhibitor potency.

View Article and Find Full Text PDF

A novel class of heat shock protein 90 (Hsp90) inhibitors was discovered by high-throughput screening and was subsequently optimized using a combination of structure-based design, parallel synthesis, and the application of medicinal chemistry principles. Through this process, the biochemical and cell-based potency of the original HTS lead were substantially improved along with the corresponding metabolic stability properties. These efforts culminated with the identification of a development candidate (compound 42) which displayed desired PK/PD relationships, significant efficacy in a melanoma A2058 xenograft tumor model, and attractive DMPK profiles.

View Article and Find Full Text PDF

Purpose: P-cadherin is a membrane glycoprotein that functionally mediates tumor cell adhesion, proliferation, and invasiveness. We characterized the biological properties of PF-03732010, a human monoclonal antibody against P-cadherin, in cell-based assays and tumor models.

Experimental Design: The affinity, selectivity, and cellular inhibitory activity of PF-03732010 were tested in vitro.

View Article and Find Full Text PDF

α-Sulfone-α-piperidine and α-tetrahydropyranyl hydroxamates were explored that are potent inhibitors of MMP's-2, -9, and -13 that spare MMP-1, with oral efficacy in inhibiting tumor growth in mice and left-ventricular hypertrophy in rats and in the bovine cartilage degradation ex vivo explant system. α-Piperidine 19v (SC-78080/SD-2590) was selected for development toward the initial indication of cancer, while α-piperidine and α-tetrahydropyranyl hydroxamates 19w (SC-77964) and 9i (SC-77774), respectively, were identified as backup compounds.

View Article and Find Full Text PDF

As part of an oncology chemistry program directed toward discovery of orally bioavailable inhibitors of the 90 kDa heat shock protein (Hsp90), several solution-phase libraries were designed and prepared. A 2 x 89 library of racemic resorcinol amides was prepared affording 131 purified compounds. After evaluation in a binding assay, followed by an AKT-Luminex cellular assay, three potent analogs had functional activity between 0.

View Article and Find Full Text PDF

alpha-Piperidine-beta-sulfone hydroxamate derivatives were explored that are potent for matrix metalloproteinases (MMP)-2, -9, and -13 and are sparing of MMP-1. The investigation of the beta-sulfones subsequently led to the discovery of hitherto unknown alpha-sulfone hydroxamates that are superior to the corresponding beta-sulfones in potency for target MMPs, selectivity vs MMP-1, and exposure when dosed orally. alpha-Piperidine-alpha-sulfone hydroxamate 35f (SC-276) was advanced through antitumor and antiangiogenesis assays and was selected for development.

View Article and Find Full Text PDF

Previous work has demonstrated that selective cyclooxygenase-2 (COX-2) inhibitors can act synergistically with radiotherapy to improve tumor debulking and control in preclinical models. The underlying mechanism of this remarkable activity has not yet been determined. Here, we report that radiation can elevate intratumoral levels of COX-2 protein and its products, particularly prostaglandin E(2) (PGE(2)).

View Article and Find Full Text PDF

The human immunodeficiency virus (HIV) has been shown to be the causative agent for AIDS. The HIV virus encodes for a unique aspartyl protease that is essential for the production of enzymes and proteins in the final stages of maturation. Protease inhibitors have been useful in combating the disease.

View Article and Find Full Text PDF