Producing green hydrogen in a cost-competitive manner via water electrolysis will make the long-held dream of hydrogen economy a reality. Although platinum (Pt)-based catalysts show good performance toward hydrogen evolution reaction (HER), the high cost and scarce abundance challenge their economic viability and sustainability. Here, a non-Pt, high-performance electrocatalyst for HER achieved by engineering high fractions of stacking fault (SF) defects for MoNi/MoO nanosheets (d-MoNi) through a combined chemical and thermal reduction strategy is shown.
View Article and Find Full Text PDFThe emergence of ferroelectricity in two-dimensional (2D) metal oxides is a topic of significant technological interest; however, many 2D metal oxides lack intrinsic ferroelectric properties. Therefore, introducing asymmetry provides access to a broader range of 2D materials within the ferroelectric family. Here, the generation of asymmetry in 2D SnO by doping the material with HfZrO (HZO) is demonstrated.
View Article and Find Full Text PDFThe therapeutic effectiveness of anticancer drugs, including nanomedicines, can be enhanced with active receptor-targeting strategies. Epidermal growth factor receptor (EGFR) is an important cancer biomarker, constitutively expressed in sarcoma patients of different histological types. The present work reports materials and in vitro biomedical analyses of silanized (passive delivery) and/or EGF-functionalized (active delivery) ceria nanorods exhibiting highly defective catalytically active surfaces.
View Article and Find Full Text PDFDental resin composites are widely used as restorative materials due to their natural aesthetic and versatile properties. However, there has been limited research on the degradation mechanisms of these composites in gastric acid environments, which would be common in patients with gastroesophageal reflux. This study aims to investigate the degradation behavior of dental composites immersed in simulated oral environments, including acid, saliva, and water.
View Article and Find Full Text PDFHydrogen production from water by piezocatalysis is very attractive owing to its high energy efficiency and novelty. BaTiO, a highly piezoelectric material, is particularly suitable for this application due to its high piezoelectric potential, non-toxic nature, and physicochemical stability. Owing to the critical role of morphology on properties, one-dimensional (1D) materials are expected to exhibit superior water-splitting performance and thus there is a need to optimise the processing conditions to develop outstanding piezocatalysts.
View Article and Find Full Text PDFLiLaZrO (LLZO)-based solid-state Li batteries (SSLBs) have emerged as one of the most promising energy storage systems due to the potential advantages of solid-state electrolytes (SSEs), such as ionic conductivity, mechanical strength, chemical stability and electrochemical stability. However, there remain several scientific and technical obstacles that need to be tackled before they can be commercialised. The main issues include the degradation and deterioration of SSEs and electrode materials, ambiguity in the Li migration routes in SSEs, and interface compatibility between SSEs and electrodes during the charging and discharging processes.
View Article and Find Full Text PDFThe time interval between the diagnosis of tumor in a patient and the initiation of treatment plays a key role in determining the survival rates. Consequently, theranostics, which is a combination of diagnosis and treatment, can be expected to improve survival rates. Early detection and immediate treatment initiation are particularly important in the management of melanoma, where survival rates decrease considerably after metastasis.
View Article and Find Full Text PDFMaterials derived from metal-organic frameworks (MOFs) have demonstrated exceptional structural variety and complexity and can be synthesized using low-cost scalable methods. Although the inherent instability and low electrical conductivity of MOFs are largely responsible for their low uptake for catalysis and energy storage, a superior alternative is MOF-derived metal-based derivatives (MDs) as these can retain the complex nanostructures of MOFs while exhibiting stability and electrical conductivities of several orders of magnitude higher. The present work comprehensively reviews MDs in terms of synthesis and their nanostructural design, including oxides, sulfides, phosphides, nitrides, carbides, transition metals, and other minor species.
View Article and Find Full Text PDFIn nature, snowflake ice crystals arrange themselves into diverse symmetrical six-sided structures. We show an analogy of this when zinc (Zn) dissolves and crystallizes in liquid gallium (Ga). The low-melting-temperature Ga is used as a "metallic solvent" to synthesize a range of flake-like Zn crystals.
View Article and Find Full Text PDFInorganic nanoparticles for drug delivery in cancer treatment offer many potential advantages because they can maximize therapeutic effect through targeting ligands while minimizing off-target side-effects through drug adsorption and infiltration. Although inorganic nanoparticles were introduced as drug carriers, they have emerged as having the capacity for combined therapeutic capabilities, including anticancer effects through cytotoxicity, suppression of oncogenes and cancer cell signaling pathway inhibition. The most promising advanced strategies for cancer therapy are as synergistic platforms for RNA interference (siRNA, miRNA, shRNA) and as synergistic drug delivery agents for the inhibition of cancer cell signaling pathways.
View Article and Find Full Text PDFCerium-based nanoparticles (CeNPs), particularly cerium oxide (CeO), have been studied extensively for their antioxidant and prooxidant properties. However, their complete redox and enzyme-mimetic mechanisms of therapeutic action at the molecular level remain elusive, constraining their potential for clinical translation. Although the therapeutic effects of both antioxidant and prooxidant mechanisms generally are attributed to Ce ↔ Ce redox switching mediation, some studies have hinted at the involvement of unknown pathways in therapeutic effects.
View Article and Find Full Text PDFThere is considerable interest in the pH-dependent, switchable, biocatalytic properties of cerium oxide (CeO) nanoparticles in biomedicine, where these materials exhibit beneficial antioxidant activity against reactive oxygen species (ROS) at a basic physiological pH but cytotoxic prooxidant activity in an acidic cancer cell pH microenvironment. While the general characteristics of the role of oxygen vacancies are known, the mechanism of their action at the atomic scale under different pH conditions has yet to be elucidated. The present work applies density functional theory (DFT) calculations to interpret, at the atomic scale, the pH-induced behavior of the stable {111} surface of CeO containing oxygen vacancies.
View Article and Find Full Text PDFMetal oxide pseudocapacitors are limited by low electrical and ionic conductivities. The present work integrates defect engineering and architectural design to exhibit, for the first time, intercalation pseudocapacitance in CeO. An engineered chronoamperometric electrochemical deposition is used to synthesize 2D CeO nanoflakes as thin as ∼12 nm.
View Article and Find Full Text PDFThe morphologies of ceria nanocrystals play an essential role in determining their redox and catalytic performances in many applications, yet the effects of synthesis variables on the formation of ceria nanoparticles of different morphologies and their related growth mechanisms have not been systematised. The design of these morphologies is underpinned by a range of fundamental parameters, including crystallography, optical mineralogy, the stabilities of exposed crystallographic planes, CeO stoichiometry, phase equilibria, thermodynamics, defect equilibria, and the crystal growth mechanisms. These features are formalised and the key analytical methods used for analysing defects, particularly the critical oxygen vacancies, are surveyed, with the aim of providing a source of design parameters for the synthesis of nanocrystals, specifically CeO.
View Article and Find Full Text PDFMetal tellurides (MTs) have emerged as highly promising candidate anode materials for state-of-the-art lithium-ion batteries (LIBs) and sodium ion batteries (SIBs). This is owing to the unique crystal structure, high intrinsic conductivity, and high trap density of such materials. The present work delivers a detailed discussion on the latest research and progress associated with the use of MTs for LIBs/SIBs with a focus on reaction mechanisms, challenges, electrochemical performance, and synthesis strategies.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2021
Hypothesis: The air-solution interface of supersaturated calcium hydrogen carbonate (Ca(HCO)) represents the highest saturation state due to evaporation/CO-degassing, where calcite crystals are expected to nucleate and grow along the interface. Hence, it should be possible to form a free-standing mineral-only calcium carbonate (CaCO) microfilm at the air-solution interface of Ca(HCO). The air-solution interface of phosphate buffered saline (PBS) could represent a phase boundary to introduce a hybrid microstructure of CaCO and carbonate-rich dicalcium hydroxide phosphate (carbonate-rich hydroxylapatite).
View Article and Find Full Text PDFThe architectural design of nanocatalysts plays a critical role in the achievement of high densities of active sites but current technologies are hindered by process complexity and limited scaleability. The present work introduces a rapid, flexible, and template-free method to synthesize three-dimensional (3D), mesoporous, CeO nanostructures comprised of extremely thin holey two-dimensional (2D) nanosheets of centimetre-scale. The process leverages the controlled conversion of stacked nanosheets of a newly developed Ce-based coordination polymer into a range of stable oxide morphologies controllably differentiated by the oxidation kinetics.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2021
Since the permeation of the inflammatory cytokines into hydrogel scaffolds has been shown to cause dysfunction of encapsulated cells, appropriate design strategies to circumvent this are essential. In the present work, it was hypothesized that highly crosslinked PVA-fucoidan and PVA-carrageenan hydrogels can control permeation of the trefoil-shaped inflammatory cytokine IL-1β while allowing the permeation of the globular protein albumin. PVA, fucoidan, and carrageenans were functionalized with methacrylate groups and the functionalized polymers were co-crosslinked by UV photopolymerization.
View Article and Find Full Text PDFThe application of nanoparticulate therapies for cancer depends largely on the uptake and redox activity of the particles. The present work reports the fabrication of different morphologies of nanoceria (CeO) as nanooctahedra (NO), nanorods (NR), and nanocubes (NC) by hydrothermal synthesis at different temperatures (100 °C, 180 °C) of solutions of 0.05 M Ce(NO)·6HO and different concentrations of NaOH (0.
View Article and Find Full Text PDFThe mechanistic effects of long-term γ irradiation on the mineralogical, microstructural, structural, physical, and chemical properties of 40 wt% blast furnace slag + 60 wt% fly ash geopolymer pastes have been examined. Ambient curing for 28 days during normal equilibration was followed by exposure to Co irradiation (1574, 4822, 10,214 kGy). The material characteristics are controlled largely through the competing mechanisms of beneficial equilibration at initial lower dosages, which enhances gelation and crosslinking, and detrimental equilibration at subsequent higher dosages, which causes structural and microstructural destabilisation.
View Article and Find Full Text PDFRemoval of rare earth elements (REEs) from industrial wastewater is a continual challenge. To date, several approaches to the synthesis of nanoadsorbants for this application have been reported, although these are characterized by insufficient adsorption capacity and limitations in cycling stability. The present work reports the fabrication and performance of hierarchical hybrid transition metal oxide (TMO) nanowires deposited on carbon fibers.
View Article and Find Full Text PDFThe present work reports a detailed mechanistic interpretation of the role of the solubility of dopants and resultant midgap defect energies in band gap engineering. While there is a general perception that a single dopant is associated with single solubility and defect mechanisms, in reality, the potential for multiple solubility and defect mechanisms requires a more nuanced interpretation. Similarly, Kröger-Vink defect equilibria assume that stoichiometries during substitutional and interstitial solid solubility as well as Schottky and Frenkel pair formation are compensated by the diffusion of matrix ions to the grain boundaries or surface.
View Article and Find Full Text PDFInnovative approaches to the control of immune response to tissue engineering scaffolds is of high priority. IL-10, an anti-inflammatory cytokine, has traditionally been conjugated to synthetic polymers for local immunomodulation. Marine-sulfated polysaccharides have been reported to possess anti-inflammatory properties.
View Article and Find Full Text PDF