Publications by authors named "Pramod K Kushawaha"

Guanylate binding protein 1 (GBP1) is critical in the host's innate immune response against viral infections and inflammation. Therefore, this study explored the role of GBP1 poly I: C, a synthetic analog of double-stranded RNA that mimics viral infections-induced inflammation in macrophages. Stimulation of human macrophage THP-1 and mice macrophage RAW 264.

View Article and Find Full Text PDF

Nanoparticles capped with natural products can be a cost-effective alternative to treat drug-resistant nosocomial infections. Therefore, silibinin-loaded chitosan-capped silver nanoparticles (S-C@AgNPs) were synthesized to evaluate their antimicrobial and anti-inflammatory potential. The S-C@AgNPs plasmon peak was found at 430 nm and had a particle size distribution of about 130 nm with an average hydrodynamic diameter of 101.

View Article and Find Full Text PDF

Guanylate-binding proteins (GBPs) are a family of interferon (IFN)-inducible GTPases and play a pivotal role in the host immune response to microbial infections. These are upregulated in immune cells after recognizing the lipopolysaccharides (LPS), the major membrane component of Gram-negative bacteria. In the present study, the expression pattern of GBP1-7 was initially mapped in phorbol 12-myristate 13-acetate-differentiated human monocytes THP-1 and mouse macrophages RAW 264.

View Article and Find Full Text PDF

Inflammatory Bowel Disease (IBD) is a persistent gastrointestinal (GI) tract inflammatory disease characterized by downregulated mucosal immune activities and a disrupted microbiota environment in the intestinal lumen. The involvement of bacterium postbiotics as mediators between the immune system and gut microbiome could be critical in determining why host-microbial relationships are disrupted in IBD. Postbiotics including Short-chain fatty acids (SCFAs), Organic acids, Proteins, Vitamins, Bacteriocins, and Tryptophan (Trp) are beneficial bioactive compounds formed via commensal microbiota in the gut environment during the fermentation process that can be used to improve consumer health.

View Article and Find Full Text PDF
Article Synopsis
  • Antimicrobial resistance (AMR) poses a significant threat in healthcare, causing over 700,000 deaths each year and making infections harder and costlier to treat.
  • Due to the slow discovery of new antibiotics, there's an urgent need for alternative treatments, with immunomodulation emerging as a promising strategy to combat drug-resistant bacteria.
  • The review discusses the potential of various substances, including phytochemicals and nanotechnology, to enhance immune responses and improve the effectiveness of existing antibiotics against resistant microorganisms.
View Article and Find Full Text PDF

Introduction: Even in present-day times, cancer is one of the most fatal diseases. People are overwhelmed by pricey chemotherapy, immunotherapy, and other costly cancer therapies in poor and middle-income countries. Cancer cells grow under anaerobic and hypoxic conditions.

View Article and Find Full Text PDF

Staphylococcus aureus (S. aureus) is a leading and crucial infectious threat to global public health due to the widespread emergence of antibiotic-resistant strains such as Methicillin-Resistant S. aureus (MRSA).

View Article and Find Full Text PDF

Purpose: Complicated intra-abdominal infection (cIAI) management involves administering antibiotics that destroy the cell wall and the genesis of bacterial lipopolysaccharide (LPS). During the infectious state, the expression of transferrin receptors upregulates on the intestinal epithelial cells, which are considered the site of infection. In the present research, transferrin decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) encapsulated moxifloxacin (MOX) were developed for possible targeting of the receptors in the colon.

View Article and Find Full Text PDF

In the present work, fixed-dose combination of bilayer tablets for piroxicam as and curcumin as immediate-release and sustained-release layer (SRL) respectively for management of inflammatory response. The SRL include Curcumin polycaprolactone microparticles from spray drying. The tablet layers include Pearlitol 200SD, Microcrystalline cellulose PH101, Aerosil 200, talc each layer.

View Article and Find Full Text PDF

Visceral Leishmaniasis (VL) is a zoonotic chronic endemic infectious disease caused by Leishmania donovani infection and a well-studied model for intracellular parasitism. Guanylate binding proteins (GBPs) are induced by interferons (IFNs), and play a crucial role in cell autonomous immunity and the regulation of inflammation. Guanylate-binding protein 1 (GBP1) has been shown vital for the host immune response against various pathogens.

View Article and Find Full Text PDF

Leishmania donovani pathogenicity is closely linked to its ability to live and replicate in the hostile environment of macrophages. All protozoan parasites, including Leishmania, are unable to synthesize purines de novo, and nucleoside diphosphate kinases (NDKs) are enzymes required to preserve the intracellular nucleoside phosphate equilibrium. For some pathogens, secretion of ATP-utilizing enzymes into the extracellular environment aids in pathogen survival via P2Z receptor mediated, ATP-induced death of infected macrophages.

View Article and Find Full Text PDF

Chandipura virus (CHPV), a cytoplasmic RNA virus, has been implicated in several outbreaks of acute encephalitis in India. Despite the relevance of CHPV to human health, how the virus interacts with the host signaling machinery remains obscure. In response to viral infections, mammalian cells activate RelA/NF-κB heterodimers, which induce genes encoding interferon beta (IFN-β) and other immune mediators.

View Article and Find Full Text PDF

Background: Withania somnifera (L.) Dunal (Solanaceae), commonly known as Ashwagandha, is one of the most important medicinal plant in the traditional Indian medical systems. Pharmacological studies have established that root extracts of W.

View Article and Find Full Text PDF

Our prior studies demonstrated that cellular response of T helper 1 (Th1) type was generated by a soluble antigenic fraction (ranging from 89.9 to 97.1 kDa) of Leishmania donovani promastigote, in treated Leishmania patients as well as hamsters and showed significant prophylactic potential against experimental visceral leishmaniasis (VL).

View Article and Find Full Text PDF

In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters.

View Article and Find Full Text PDF

Th1 immune responses play an important role in controlling Visceral Leishmaniasis (VL) hence, Leishmania proteins stimulating T-cell responses in host, are thought to be good vaccine targets. Search of such antigens eliciting cellular responses in Peripheral blood mononuclear cells (PBMCs) from cured/exposed/Leishmania patients and hamsters led to the identification of two enzymes of glycolytic pathway in the soluble lysate of a clinical isolate of Leishmania donovani--Enolase (LdEno) and aldolase (LdAld) as potential Th1 stimulatory proteins. The present study deals with the molecular and immunological characterizations of LdEno and LdAld.

View Article and Find Full Text PDF

Visceral leishmaniasis (VL) is one of the most important parasitic diseases with approximately 350 million people at risk. Due to the non availability of an ideal drug, development of a safe, effective, and affordable vaccine could be a solution for control and prevention of this disease. In this study, a potential Th1 stimulatory protein- Triose phosphate isomerase (TPI), a glycolytic enzyme, identified through proteomics from a fraction of Leishmania donovani soluble antigen ranging from 89.

View Article and Find Full Text PDF

In Leishmania species, Protein disulfide isomerase (PDI)--a redox chaperone, is reported to be involved in its virulence and survival. This protein has also been identified, through proteomics, as a Th1 stimulatory protein in the soluble lysate of a clinical isolate of Leishmania donovani (LdPDI). In the present study, the molecular characterization of LdPDI was carried out and the immunogenicity of recombinant LdPDI (rLdPDI) was assessed by lymphocyte proliferation assay (LTT), nitric oxide (NO) production, estimation of Th1 cytokines (IFN-γ and IL-12) as well as IL-10 in PBMCs of cured/endemic/infected Leishmania patients and cured L.

View Article and Find Full Text PDF

The development of a vaccine against visceral leishmaniasis (VL) conferring long-lasting immunity remains a challenge. Identification and proteomic characterization of parasite proteins led to the detection of p45, a member of the methionine aminopeptidase family. To our knowledge the present study is the first known report that describes the molecular and immunological characterization of p45.

View Article and Find Full Text PDF

Objectives: Miltefosine, an orally effective antileishmanial drug, works directly on the parasite by impairing membrane synthesis and subsequent apoptosis of the parasite and has also been reported to have macrophage-activating functions that aid parasite killing. We investigated the type of immunological responses generated in miltefosine-treated Leishmania donovani-infected hamsters, which simulate the clinical situation of human kala-azar.

Methods: Twenty-five-day-old infected hamsters, treated with miltefosine at 40 mg/kg for 5 consecutive days, were euthanized on days 30 and 45 post treatment (p.

View Article and Find Full Text PDF

In visceral leishmaniasis, Th1 types of immune responses correlate with recovery from and resistance to disease, and resolution of infection results in lifelong immunity against the disease. Leishmanial Ags that elicit proliferative and cytokine responses in PBMCs from cured/exposed/Leishmania patients have been characterized through proteomic approaches, and elongation factor-2 is identified as one of the potent immunostimulatory proteins. In this study, we report the cloning and expression of Leishmania donovani elongation factor-2 protein (LelF-2) and its immunogenicity in PBMCs of cured/exposed Leishmania-infected patients and hamsters (Mesocricetus auratus).

View Article and Find Full Text PDF

Leishmania produce several types of mucin-like glycoproteins called proteophosphoglycans (PPGs) which exist as secretory as well as surface-bound forms in both promastigotes and amastigotes. The structure and function of PPGs have been reported to be species and stage specific as in the case of Leishmania major and Leishmania mexicana; there has been no such information available for Leishmania donovani. We have recently demonstrated that PPG is differentially expressed in sodium stibogluconate-sensitive and -resistant clinical isolates of L.

View Article and Find Full Text PDF

Objectives: The aim of this study was to resolve the putative pathway responsible for death induced by peganine hydrochloride dihydrate isolated from Peganum harmala seeds at cellular, structural and molecular level in Leishmania donovani, a causative agent of fatal visceral leishmaniasis.

Methods: The mode of action was assessed using various biochemical approaches including phosphatidylserine exposure, estimation of mitochondrial transmembrane potential and in situ dUTP nick end labelling staining of nicked DNA in the parasite. Molecular modelling and molecular dynamics studies were conducted with DNA topoisomerase I to identify the target of peganine hydrochloride dihydrate mediating apoptosis.

View Article and Find Full Text PDF