Herein, we report the efficient intramolecular dehydrative coupling of symmetrical and unsymmetrical diols for the synthesis of macrocyclic crown ethers in the presence of Ni-zeolite as a catalyst under continuous flow module. This method is also efficient for the intramolecular dehydrative macrolactonization of seco-acids using Ni-zeolite or Ru-zeolite. This flow catalysis is demonstrated by a wide substrate scope with one-time packed Ni-zeolite to produce 20 macrocyclic polyethers and 11 examples of broad macrolactones with water as a byproduct.
View Article and Find Full Text PDFThe conversion of lignin into bioactive compounds through selective organic synthesis methods represents a promising frontier in the pursuit of sustainable raw materials and green chemistry. This review explores the versatility of lignin-derived bioactive compounds, ranging from their application in drug discovery to their role in the development of biodegradable materials. Despite notable advancements, the synthesis routes and yields of highly bioactive molecules from lignin still require further exploration and improvement.
View Article and Find Full Text PDFSingle-cell analysis (SCA) improves the detection of cancer, the immune system, and chronic diseases from complicated biological processes. SCA techniques generate high-dimensional, innovative, and complex data, making traditional analysis difficult and impractical. In the different cell types, conventional cell sequencing methods have signal transformation and disease detection limitations.
View Article and Find Full Text PDFMetal-Organic Frameworks (MOFs) have exceptional inherent properties that make them highly suitable for diverse applications, such as catalysis, storage, optics, chemo sensing, and biomedical science and technology. Over the past decades, researchers have utilized various techniques, including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasonic, to synthesize MOFs with tailored properties. Post-synthetic modification of linkers, nodal components, and crystallite domain size and morphology can functionalize MOFs to improve their aptamer applications.
View Article and Find Full Text PDFThe augmentation of biogas production can be achieved by incorporating metallic nanoparticles as additives within anaerobic digestion. The objective of this current study is to examine the synthesis of Fe-Ni-Zn and Fe-Co-Zn trimetallic nanoparticles using the co-precipitation technique and assess its impact on anaerobic digestion using palm oil mill effluent (POME) as carbon source. The structural morphology and size of the synthesised trimetallic nanoparticles were analysed using a range of characterization techniques, such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDX) .
View Article and Find Full Text PDFAptasensors have attracted considerable interest and widespread application in point-of-care testing worldwide. One of the biggest challenges of a point-of-care (POC) is the reduction of treatment time compared to central facilities that diagnose and monitor the applications. Over the past decades, biosensors have been introduced that offer more reliable, cost-effective, and accurate detection methods.
View Article and Find Full Text PDFSeveral strategies have been proposed to improve the performance of the anaerobic digestion (AD) process. Among them, the use of various nanoparticles (NPs) (e.g.
View Article and Find Full Text PDF