Two-dimensional and layered van der Waals materials promise to overcome the limitations of conventional ferroelectrics in terms of miniaturization and material integration, but synthesis has produced only small (up to few micrometer-sized) ferroic crystals. Here, we report the realization of in-plane ferroelectric few-layer crystals of the monochalcogenides tin(II) sulfide and selenide (SnS, SnSe) whose linear dimensions exceed the current state of the art by up to 1 order of magnitude. Such large crystals allow the investigation of ferroic domain patterns that are unaffected by edges and finite-size effects.
View Article and Find Full Text PDFEmergent phenomena in traditional ferroelectrics are frequently observed at heterointerfaces. Accessing such functionalities in van der Waals ferroelectrics requires the formation of layered heterostructures, either vertically stacked (similar to oxide ferroelectrics) or laterally stitched (without equivalent in 3D-crystals). Here, we investigate lateral heterostructures of the ferroelectric van der Waals semiconductors SnSe and SnS.
View Article and Find Full Text PDF