Stroke is one of the leading causes of mortality and disability worldwide. Several evaluation methods have been used to assess the effects of stroke on the performance of activities of daily living (ADL). However, these methods are qualitative.
View Article and Find Full Text PDFSurgeons, while performing manual endovascular procedures with conventional surgical tools (catheters and guidewires), experience forces on the tool outside the patient's body that are proximal to the point of actuation. Currently, most of the robotic systems for endovascular procedures use active catheters to navigate vasculature and to measure the contact forces at the distal end (tool tip). These tools are more expensive than the conventional surgical tools used in endovascular procedures.
View Article and Find Full Text PDFBackground: Cerebral palsy (CP) is the most common developmental motor disorder in children. Individuals with CP demonstrate abnormal muscle tone and motor control. Within the population of children with CP, between 4% and 17% present dystonic symptoms that may manifest as large errors in movement tasks, high variability in movement trajectories, and undesired movements at rest.
View Article and Find Full Text PDFThis paper describes a new implementation for calculating Jacobian and its time derivative for robot manipulators in real-time. The estimation of Jacobian is the key in the real-time implementation of kinematics and dynamics of complex planar or spatial robots with fixed as well as floating axes in which the Jacobian form changes with the structure. The proposed method is suitable for such implementations.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
November 2018
Objective: Inadequate visual and force feedback while navigating surgical tools elevate the risk of endovascular procedures. It also poses occupational hazard due to repeated exposure to X-rays. A teleoperated robotic system that augments surgeon's actions is a solution.
View Article and Find Full Text PDF