High-density polythene (HDPE) is difficult to separate from food packaging waste for recycling because the packaging occasionally has multilayer plastic labels attached. Solvents are employed in the current separation techniques to remove undesirable layers from HDPE substrates. The possibility of separating HDPE via the impact-delamination phenomenon was explored both theoretically and experimentally.
View Article and Find Full Text PDFHydrophobic ionic liquid ferrofluids (ILFFs) are studied for use in electrospray thrusters for microsatellite propulsion under nonatmospheric and in high-temperature environments. We synthesized a hydrophobic ILFF by dispersing sterically stabilized γ-FeO nanoparticles (NPs) in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. A diblock copolymer, C4-RAFT-AA-DEAm, was synthesized to facilitate multipoint bidentate anchoring to the NP through the acrylic acid block.
View Article and Find Full Text PDFClot retraction refers to the process whereby activated platelets transduce contractile forces onto the fibrin network of a thrombus, which over time increases clot density and decreases clot size. This process is considered important for promoting clot stability and maintaining blood vessel patency. Insights into the mechanisms regulating clot retraction at sites of vascular injury have been hampered by a paucity of in vivo experimental models.
View Article and Find Full Text PDFWhen NH4NO3 emulsions are used in blast holes containing pyrite, they can exothermally react with pyrite, causing the emulsion to intensively heat and detonate prematurely. Such premature detonations can inflict fatal and very costly damages. The mechanism of heating of the emulsions is not well understood though such an understanding is essential for designing safe blasting.
View Article and Find Full Text PDFWe have examined the nucleation of chemically generated nitrogen gas bubbles in microheterogeneous systems, using optical microscopy on a model system consisting of a single liquid-liquid interface. Results clearly show that bubble nucleation occurs in both the aqueous and oil phases, despite the nitrogen production reaction being a purely aqueous phase process. A theoretical model is developed which describes the time evolution of the nitrogen concentration profile, and this reveals that bubbles in the oil are a result of homogeneous nucleation of dissolved N(2) transported across the interface into a (supersaturated) diffusion layer.
View Article and Find Full Text PDF